K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2+2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2 +\left(c-a\right)^2=0\)

do...
=> a=b=c
=> A = 0


 

NV
3 tháng 3 2021

\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)

\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)

 

\(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

\(\left(a-b\right)^{31}+\left(b-c\right)^{10}+\left(c-a\right)^{2014}\)

\(=\left(a-a\right)^{31}+\left(b-b\right)^{10}+\left(c-c\right)^{2014}\)

\(=0+0+0=0\)

15 tháng 1 2021

hoc24.vn

Khác số chút thoyy.

15 tháng 1 2021

Cảm ơn bạn nhiều !

11 tháng 10 2020

Áp dụng bđt : \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(1)

CM bđt đúng: Từ (1) => 3xy + 3yz + 3xz \(\le\)x2 + y2 + z2 + 2xy + 2xz + 2yz

<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz \(\ge\)0

<=> (x - y)2 + (y - z)2 + (x - z)2 \(\ge\)0 (luôn đúng với mọi x;y;z)

Khi đó: P = \(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy MaxP = 3 khi a = b = c = 1

11 tháng 10 2020

Ta có đánh giá quen thuộc sau: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)*đúng*

Áp dụng, ta được: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

Đẳng thức xảy ra khi a = b = c = 1