K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

Answer:

a/ \(a^3+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=2.10\)

\(=20\)

b/ \(a^4+b^4\)

 \(=\left(a^2+b^2\right)^2-2a^2b^2\)

\(=8^2-2.4\)

\(=56\)

4 tháng 7 2017

\(\hept{\begin{cases}a=12\\b=11\end{cases}}\)hoặc \(\hept{\begin{cases}a=11\\b=12\end{cases}}\)

Ta có \(a^2+b^2=11^2+12^2=265\)

Hoặc \(a^2+b^2=12^2+11^2=265\)

.. Kết bạn với mình nha 

4 tháng 7 2017

Ta có : 

a . b = 132 => a = \(\frac{132}{b}\).Thay a = \(\frac{132}{b}\)vào biểu thức a + b = 23 ta được : 

\(\frac{132}{b}+b=23\)\(\Leftrightarrow\frac{132+b^2}{b}=23\)\(\Leftrightarrow b^2-23b+132=0\)\(\Leftrightarrow\orbr{\begin{cases}b=12\\b=11\end{cases}}\)

Với b = 12 => a = 132 : 12 = 11 => \(a^2+b^2=11^2+12^2=265\)

Với b = 11 => a = 132 : 11 = 12 => \(a^2+b^2=12^2+11^2=265\)

Đáp số: \(a^2+b^2=265\)

4 tháng 7 2017

Ta có:a+b=23\(\Rightarrow\)(a+b)2=232

\(\Rightarrow\)(a+b)2=529\(\Rightarrow\)a2+2ab+b2=529

\(\Rightarrow\)a2+b2=529-2.132

\(\Rightarrow\)a2+b2=529-264\(\Rightarrow a^2+b^2=265\)

4 tháng 7 2017

Ta có: (a+b)^2=a^2+2ab+b^2
Thay a+b=23 ,a.b=132 vào biểu thức ta có:
     23^2=a^2+b^2+2.132
      529=a^+b^2+264
      529-264=a^2+b^2
        265     =a^2+b^2
Vậy a^2+b^2=265
 k mik nha bạn

4 tháng 7 2019

\(a^2+b^2=13\Leftrightarrow a^2+b^2+2ab-2ab=13\Leftrightarrow\left(a+b\right)^2-2ab=13\)

Mà \(a+b-ab=-1\Leftrightarrow ab=a+b+1\)Thay vào phương trình trêm ta có:

\(\left(a+b\right)^2-2\left(a+b+1\right)=13\)

<=> \(\left(a+b\right)^2-2\left(a+b\right)+1=16\)

<=> \(\left(a+b+1\right)^2=4^2\)

<=> \(a+b+1=\pm4\)=> \(ab=\pm4\)

Ta lại có: \(a^2+b^2=13\Leftrightarrow\left(a-b\right)^2+2ab=13\)

+) Với ab=4

thay vào ta có: \(\left(a-b\right)^2+8=13\Leftrightarrow\left(a-b\right)^2=5\Leftrightarrow\left|a-b\right|=\sqrt{5}\)

=> \(P=\left|a^3-b^3\right|=\left|\left(a-b\right)\left(a^2+b^2+ab\right)\right|=\left|a-b\right|\left|a^2+b^2+ab\right|\)

\(=\sqrt{5}\left(13+4\right)=17\sqrt{5}\)

+) Với ab=-4 . Em làm tương tự nhé!

Ta có : \(a^2+b^2+c^2=2016\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=2016^2\)

\(\Leftrightarrow a^4+b^4+c^4=2016^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

Lại có : \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2016+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=-2016\)

\(\Leftrightarrow ab+bc+ac=-1008\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\left(-1008\right)^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2=1008^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1008^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=1008^2\)

Nên : \(A=a^4+b^4+c^4=2016^2-2.1008^2=4064251,587\)

15 tháng 5 2018

bạn làm sai rồi

2016^2 - 2.1008^2 = 2032128