Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?
a\(^2\)+ b\(^2\) + c\(^2\) = 1⇒ \(\left|a\right|\); \(\left|b\right|\) ; \(\left|c\right|\) ≤ 1
⇒ \(\left|a^3\right|\) ≤ a\(^2\) ; \(\left|b^3\right|\) ≤ b\(^2\) ; \(\left|c^3\right|\) ≤ c\(^2\)
⇒a\(^3\)+ b\(^3\)+ c\(^3\) ≤ \(\left|a^3\right|\) + \(\left|b^3\right|\) + \(\left|c^3\right|\) ≤ a\(^2\) + b\(^2\) + c\(^2\) = 1
Dấu "=" xảy ra khi( a;b;c) = (1;0;0) ; (0;1;0) ; (0;0;1)
Vậy S = 0 + 0 + 1 = 1
Ta có a + b + c = 0
=> a + b = -c
=> (a + b)2 = (-c)2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = -2ab
=> (a2 + b2 - c2)2 = (-2ab)2
=> a4 + b4 + c4 + 2a2b2 - 2a2c2 - 2b2c2 = 4a2b2
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2
Khi đó a2 + b2 + c2 = 14
<=> (a2 + b2 + c2)2 = 142
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 196
=> a4 + b4 + c4 + a4 + b4 + c4 = 196 (Vì a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2)
=> 2(a4 + b4 + c4) = 196
=> a4 + b4 + c4 = 98
Ta có a2 + b2 + c2 = 14
=> (a2 + b2 + c2)2 = 196
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 196
=> a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 196
Lại có a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
=> 2(ab + bc + ca) = -14
=> ab + bc + ca = -7
=> (ab + bc + ca)2 = 49
=> a2b2 + b2c2 + c2a2 + 2ab2c + 2a2bc + 2abc2 = 49
=> a2b2 + b2c2 + c2a2 + 2abc(a + b + c) = 49
=> a2b2 + b2c2 + c2a2 = 49
Khi đó a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 196
<=> a4 + b4 + c4 + 2.49 = 196
=> a4 + b4 + c4 + 98 = 196
=> a4 + b4 + c4 = 98
Vậy N = 98
Bài 1:
a)\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Khi \(a=b=c\)
b)\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(\Rightarrow-2a^2-2b^2-2c^2+2ab+2bc+2ca=0\)
\(\Rightarrow-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\le0\)
Khi \(a=b=c\)
c)\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Khi \(a=b=c\)
Bài 2:
Từ \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow-2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Rightarrow ab+bc+ca=-1\)\(\Rightarrow\left(ab+bc+ca\right)^2=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+b^2ca+c^2ab\right)=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\left(vi`....a+b+c=0\right)\)
Khi đó: \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Rightarrow a^4+b^4+c^4+2=4\Rightarrow a^4+b^4+c^4=2\)
so u cn tk m sl fr u
a2 + b2+ c2 = ab + bc + ca
=> a2 + b2+ c2 -ab - bc - ca = 0
=> 2 ( a2 + b2 + c2 -ab -bc - ca) =0
=> ( a2 - 2ab + b2 ) + ( b2 -2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a-b )2 + ( b -c)2 + ( c- a)2 =0
Do ( a -b)2 \(\ge\)0 ( b-c)2 + \(\ge\)0 ( c -a )2 \(\ge\)0
=> a-b =0 ; b -c = 0 ; c -a = 0
=> a=b ; b = c ; c =a
Vậy a = b = c
Theo dieu kien de bai: a=b=-1 va c=2
P=4+1+1+16=22
P=22 chac chan dung