K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

(ax+by)\(^{^2}\)\(\le\) (\(a^2\)+\(b^2\))(\(x^2\)+\(y^2\))

<=> \(a^2\)\(x^2\)+2axby+\(b^2\)\(y^2\)\(\le\)\(a^2\)\(x^2\)+\(a^2\)\(y^2\)+\(b^2\)\(x^2\)+\(b^2\)\(y^2\)

<=> 2axby\(\le\)\(a^2\)\(y^2\)+\(b^2\)\(x^2\)

<=>\(a^2\)\(y^2\)-2aybx+\(b^2\)\(x^2\)\(\ge\)0

<=> \(\left(ay-bx\right)^2\)\(\ge\)0(luôn đúng)

dấu = xảy ra khi ay-bx=0 <=> ay=bx

 

20 tháng 5 2016

BDT Bunnhiacopxki

Với mọi số a;b;x;y ta có:

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

dấu = xảy ra khi \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

 

20 tháng 5 2016

BĐT Bunnhiacopxki

Với mọi số a;b;x;y ta có:

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

20 tháng 5 2016

Nguyễn Huy Thắng Sai tên BĐT

3 tháng 7 2015

tách ít ít ra thôi. để cả cộp thế này k ai làm cho đâu. mệt quá

29 tháng 6 2017

Ta có:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow\) \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow\) \(a^2y^2+b^2x^2=2axby\)

\(\Leftrightarrow\) \(a^2y^2+b^2x^2-2axby=0\)

\(\Leftrightarrow\) \(\left(ay-bx\right)^2=0\)

\(\Leftrightarrow\) \(ay-bx=0\)

\(\Leftrightarrow\) \(ay=bx\)

\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)

a/x +b/y +c/z =0 ->ayz+bxz+cxz=0

x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1

x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1

x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM

k hộ mik nha

28 tháng 5 2019

#)Giải :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)

            #~Will~be~Pens~#