K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

\(Giải\)

Vì: 11 là số nguyên tố mà:(5a+6b)(6a+5b) chia hết cho 11

nên ít nhất 1 trong 2 số trên chia hết cho 11

+) 2 số chia hết cho 11 khi đó (5a+6b)(6a+5b) chia hết cho 121

+) 5a+6b chia hết cho 11

=> 11a+11b-5a-6b chia hết cho 11 <=> 6a+5b chia hết cho 11

=> (5a+6b)(6a+5b) chia hết cho 121

+) 6a+5b chia hết cho 11

=> 11a+11b-6a-5b chia hết cho 11

<=> 5a+6b chia hết cho 11

=> (5a+6b)(6a+5b) chia hết cho 11

Vậy: nếu  (5a+6b)(6a+5b) chia hết cho 11 thì tích đó cũng chia hết cho 121 (đpcm)

6 tháng 1 2016

(5a+6b)(5a+6b)=11.11(a+b) chia hết cho 11

121 = 11.11 

vậy ................... chia hết cho 121

ko chắc

30 tháng 6 2017

nếu 4a + 5b chia hết cho 23 (1)


(1) \(\Rightarrow\) (7a + 3b) + (4a + 5b) = (11a + 8b) chia hết cho 23 (2)


(1) \(\Rightarrow\) (7a + 3b) - (4a + 5b) = (3a - 2b) chia hết cho 23

\(\Rightarrow\) (3a - 2b).4 chia hết cho 23 \(\Leftrightarrow\) (12a - 8b) chia hết cho 23

(3) lấy (2) + (3) = 23a chia hết cho 23 (đúng \(\forall a\))


Vậy 4a + 5b chia hết cho 23

30 tháng 6 2017

Giải:

Ta có: \(7a+3b⋮23\Rightarrow6\left(7a+3b\right)⋮23\)

\(\Rightarrow6\left(7a+3b\right)+\left(4a+5b\right)⋮23\)

\(\Rightarrow46a+23b⋮23\Rightarrow23\left(2a+b\right)⋮23\) (Đúng)

Vậy \(4a+5b⋮23\) (Đpcm)

8 tháng 4 2015

a)9a+6b=(9+60)*(a+b)=15*(a+b)

vì 15 : 15 nên a+b cũng chia hết cho 15

điều ngược lại thì mk 0 hiểu