K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 6 2019

\(\left(a+b+c\right)^2=1\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)

\(\Rightarrow ab+bc+ca=0\) (1)

Mặt khác ta có kết quả quen thuộc:

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow3abc=ab+bc+ca=0\)

\(\Rightarrow abc=0\)

Do vai trò của a; b; c là như nhau, giả sử \(a=0\)

Thay vào (1) \(\Rightarrow bc=0\)

Giả sử \(b=0\)

Thay vào \(a+b+c=1\Rightarrow c=1\)

Vậy \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

\(\Rightarrow S=1\)

24 tháng 6 2019

cám ơn bạn.

30 tháng 8 2019

E hổng biết cách này có đúng ko nữa:((

5

Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)

\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )

Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

15 tháng 9 2017

Trong ba điều kiện cho trên thì ta có 1 số 1 còn 2 số kia =0 từ đó khẳng định a^2009+b^2009+c^2009=1

15 tháng 9 2017

Mình cần chứng minh ra nó gồm 1 số =1 và 2 số =0 mà bạn =)))))))

15 tháng 8 2017

Làm trước câu 3:

Ta có:

\(\frac{1x}{a}+\frac{y}{b}=\frac{x+y}{c}\)

\(\Leftrightarrow1bcx+acy=abx+aby\)

\(\Leftrightarrow1x\left(bc-ab\right)=y\left(ab-ac\right)\)

\(\Leftrightarrow\frac{1x}{y}=\frac{a\left(b-c\right)}{b\left(C-a\right)}\)

Ta cần chứng minh

\(1xa^2+yb^2=\left(x+y\right)c^2\)

\(\Leftrightarrow1x\left(a^2-c^2\right)=y\left(c^2-b^2\right)\)

\(\Leftrightarrow\frac{1x}{y}=\frac{\left(c-b\right)\left(c+b\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a\left(b-c\right)}{b\left(c-a\right)}\)

Vậy ta có ĐPCM

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

28 tháng 2 2017

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

AH
Akai Haruma
Giáo viên
17 tháng 1 2019

Câu 1:

\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)

\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)

Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)

\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)

Và do $a,b\geq 3$ nên:

\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)

\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)

Cộng tất cả những BĐT trên ta có:

\(A\geq 2+14+62+2=80\) (đpcm)

Dấu "=" xảy ra khi $a=b=3$

AH
Akai Haruma
Giáo viên
17 tháng 1 2019

Câu 2:

Bình phương 2 vế ta thu được:

\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)

\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)

\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)

\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)

Do đó pt đã cho vô nghiệm.

15 tháng 9 2023

1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\)  \(\left(a;b;c\in R\right)\)

Ta có :

\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)

Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được

\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)

15 tháng 9 2023

\(3^x=y^2+2y\left(x;y>0\right)\)

\(\Leftrightarrow3^x+1=y^2+2y+1\)

\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)

- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)

- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)  

\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)

- Với \(x>1;y>1\)

\(\left(y+1\right)^2\) là 1 số chính phương

\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương

\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)

Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài