K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

A B C D E F I K

a ) Vì \(\hept{\begin{cases}EA=ED\left(gt\right)\\FB=FC\left(gt\right)\end{cases}}\)

\(\Rightarrow\)   EF là đường trung bình của hình thang ABCD.

\(\Rightarrow\) EF // AB // CD 

Xét \(\Delta ABC\) có : \(\hept{\begin{cases}BF=FC\\FK//AB\end{cases}}\)

\(\Rightarrow AK=KC\)

Xét \(\Delta ABD\) có : \(\hept{\begin{cases}AE=ED\\EI//AB\end{cases}}\)

\(\Rightarrow BI=ID\)

Vậy \(\hept{\begin{cases}AK=KC\\BI=ID\end{cases}\left(đpcm\right)}\)

b ) Vì EF là đường trung bình của hình thang ABCD.

\(\Rightarrow EF=\frac{CD+AB}{2}=\frac{10+6}{8}=2\left(cm\right)\)

Mặt khác, ta có :   

* EI là đường trung bình của \(\Delta ABD\)

\(\Rightarrow EI=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)

* KF là đường trung bình của  \(\Delta ABC\)

\(\Rightarrow KF=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)

Mà : EF = EI + IK + KF

\(\Rightarrow\)   IK = EF - ( EI + KF ) = 8 - ( 3 + 3 ) = 2cm.

Vậy \(\hept{\begin{cases}EI=3cm\\KF=3cm\\IK=2cm\end{cases}}\)

Chúc bạn học tốt !!!

22 tháng 4 2017

Giải bài 28 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8

a) + Hình thang ABCD có EA = ED, FB = FC (gt)

⇒ EF là đường trung bình của hình thang ABCD.

⇒ EF // AB // CD

+ ΔABC có BF = FC (gt) và FK // AB (cmt)

⇒ AK = KC

+ ΔABD có: AE = ED (gt) và EI // AB (cmt)

⇒ BI = ID

b) + Vì EF là đường trung bình của hình thang ABCD.

⇒ EF = (AB + CD)/2 = (6 + 10)/2 = 8cm.

+ ΔABD có AE = ED, DI = IB

⇒ EI là đường trung bình của ΔABD

⇒ EI = AB/2 = 6/2 = 3(cm)

+ ΔABC có CF = BF, CK = AK

⇒ KF là đường trung bình của ΔABC

⇒ KF = AB /2 = 6/2 = 3cm

+ Lại có: EI + IK + KF = EF

⇒ IK = EF – EI – KF = 8 – 3 – 3 = 2cm

1 tháng 9 2016

Bạn tự vẽ hình nha ==''

a.

E là trung điểm của AD

F là trung điểm của BC

=> EF là đường trung bình của hình thang ABCD

=> EF // AB // CD

  • mà F là trung điểm của BC

=> I là trung điểm của BD

=> BI = ID

  • mà E là trung điểm của AD

=> K là trung điểm của AC

=> AK = KC

b.

E là trung điểm của AD

I là trung điểm của BD

=> EI là đường trung bình của tam giác ADB

=> EI = \(\frac{AB}{2}\) (1)

F là trung điểm của BC

K là trung điểm của AC

=> FK là đường trung của tam giác ABC

=> FK = \(\frac{AB}{2}\) (2)

Từ (1) và (2)

=> EI = FK = \(\frac{AB}{2}=\frac{6}{2}=3\left(cm\right)\)

EF là đường trung bình của hình thang ABCD

=> EF = \(\frac{AB+CD}{2}=\frac{6+10}{2}=\frac{16}{2}=8\left(cm\right)\)

IK = EF - EI - FK = 8 - 3 - 3 = 2 (cm)

Chúc bạn học tốt ^^

1 tháng 9 2016

na!!!

21 tháng 4 2017

a) Vì EA = ED, FB = FC (gt)

Nên EF là đường trung bình của hình thang ABCD.

Do đó: EF // AB // CD

∆ABC có BF = FC và FK // AB

nên: AK = KC

∆ABD có AE = ED và EI // AB

nên: BI = ID

b) Vi EF là đường trung bình của hình thang ABCD.

nên EF = \(\dfrac{AB+CD}{2}\) = \(\dfrac{6+10}{2}=8\)

EI là đường trung bình của ∆ABD nên \(EI=\dfrac{1}{2}AB=\dfrac{1}{2}.6=3\left(cm\right)\)

KF là đường trung bình của ∆ABC nên \(KF=\dfrac{1}{2}AB=\dfrac{1}{2}.6=3\left(cm\right)\)

Lại có EF = EI + IK + KF

nên IK = EF - (EI + KF) = 8 - (3 + 3) = 2 (cm)

9 tháng 7 2019

Giải bài 28 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8

a) + Hình thang ABCD có EA = ED, FB = FC (gt)

⇒ EF là đường trung bình của hình thang ABCD.

⇒ EF // AB // CD

+ ΔABC có BF = FC (gt) và FK // AB (cmt)

⇒ AK = KC

+ ΔABD có: AE = ED (gt) và EI // AB (cmt)

⇒ BI = ID

b) + Vì EF là đường trung bình của hình thang ABCD.

⇒ EF = (AB + CD)/2 = (6 + 10)/2 = 8cm.

+ ΔABD có AE = ED, DI = IB

⇒ EI là đường trung bình của ΔABD

⇒ EI = AB/2 = 6/2 = 3(cm)

+ ΔABC có CF = BF, CK = AK

⇒ KF là đường trung bình của ΔABC

⇒ KF = AB /2 = 6/2 = 3cm

+ Lại có: EI + IK + KF = EF

⇒ IK = EF – EI – KF = 8 – 3 – 3 = 2cm

cái này tự vẽ hình

giải: a) hình thang ABCD có: E,F là trung điểm của AD, BC => EF là đường trung bình của hình thang ABCD => EF // CD

xét \(\Delta ADC\) có: E là trung điểm của AD; EK // CD => K là trung điểm của AC => AK = KC

xét \(\Delta DBC\) có: F là trung điểm của BC ; FI // CD => I là trung điểm của DB => BI = ID

b) \(\Delta ADB\) có: E,I là trung điểm của AD, BD => EI là đường trung bình của tam giác ADB => EI = 1/2 . AB = 1/2 . 6 = 3 cm

tương tự ta cũng có KF = 1/2 . AB = 1/2 . 6 = 3 cm

EF là đường trung bình của hình thang ABCD => EF = (AB + CD) / 2 = 16/2 = 8 cm

=> IK = EF - EI - KF = 8 - 3 - 3 = 2 cm

t i c k nhé!!! 5678686798

3 tháng 6 2016

Gọi a là cạnh của tam giác đều ABC, Slà diện tích của tam giác đều ABC , xlà diện tích tam giác ADB , ylà diện tích tam giác ADC , zlà diện tích tam giác BDC ﴾x,y,z > 0﴿ Ta có : x + y + z = S Mặt khác : x = 2 a.DM ⇒DM = a 2x ; tương tự : DN = a 2y ; DP = a 2z ⇒DM + DN + DP = a 2x + a 2y + a 2z = a 2 x + y + z = a 2S ﴾không đổi﴿ Vậy khi D di chuyển thì DM + DN + DP không đổi ﴾đpcm﴿

18 tháng 7 2015

a/ Chứng minh rằng AK=KC,BI=ID 
vì FE là đường trung bình hình thang nên FE//AB//CD 
E, F là trung điểm của AD và BC nên AK=KC 
BI=ID 
( trong tam giác đường thẳng qua trung điểm của 1 cạnh, // với cạnh thứ 2 thì qua trung điểm cạnh thứ 3) 
b/ CHo AB=6cm,CD=10cm.Tính độ dài EI,KF,IK 
EI=KF=1/2.AB=1/2.6=3 (đường trung bình tam giác) 
FE=(AB+CD)/2= (10+6)/2=8 
IK= FE-EI-KF=8-3-3=2

Yahoo Hỏi & Đáp

8 tháng 9 2015

Võ Hạnh Huy lơp mấy thế ?

1 tháng 12 2016

E là trung điểm của AD

F là trung điểm của BC

=> FE là đường trung bình của tam giác ABC

\(\Rightarrow FE=\frac{AB+CD}{2}=\frac{6+10}{2}=\frac{16}{2}=8\left(cm\right)\)

FE // AB // CD

=> K là trung điểm của AC

I là trung điểm của BD

=> AK = KC

BI = ID

K là trung điểm của AC

I là trung điểm của BD

mà F là trung điểm của BC

E là trung điểm của AD

=> KF là đường trung bình của tam giác ABC

EI là đường trung bình của tam giác ABD

\(\Rightarrow KF=\frac{AB}{2}=\frac{6}{2}=3\left(cm\right)\)

\(EI=\frac{AB}{2}=\frac{6}{2}=3\left(cm\right)\)

EI + IK + KF = EF

3 + IK + 3 = 8

IK + 6 = 8

IK = 8 - 6

IK = 2 (cm)