K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

a: Thay m=2 vào y=(m-1)x+m-1, ta được:

y=(2-1)x+2-1=x+1

Phương trình hoành độ giao điểm là:

x+1=-x+1

=>2x=0

=>x=0

Thay x=0 vào y=x+1, ta được:

y=0+1=1

Vậy: Tọa độ giao điểm là A(0;1)

b: Thay x=3 và y=4 vào y=(m-1)x+m-1, ta được;

3(m-1)+m-1=4

=>4(m-1)=4

=>m-1=1

=>m=2

c: Để hai đường thẳng này cắt nhau thì \(m-1\ne-1\)

=>\(m\ne0\)

26 tháng 11 2023

\(y=\left(m-1\right)^2+2\left(d\right)\)

a) (d) đi qua A(1; 1)

\(\Rightarrow\)x=1; y=1

Thay x=1; y=1 vào (d)

\(\Rightarrow\) \(\left(m-1\right)^2\times1+2=1\)

\(\Leftrightarrow\left(m-1\right)^2=-1\)(vô lí)

Vậy ko có m để (d) đi qua A(1; 1)

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge24x+4x12  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1x=41). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A2x+14x+3+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A4x+14x+3+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014Ax+14x4x+1+2014=x+1(2x1)2+20142014

Hơn nữa    A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x1=0  \Leftrightarrow x=\dfrac{1}{4}x=41 .

Vậy  GTNN  =  2014

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 Với giá trị nào của m thì y là hàm số bậc nhấtVới giá trị nào của m thì hàm số đồng biến.Tìm m để đồ thị hàm số điqua điểm A(2; 3)Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.Tìm m để đồ thị đi qua điểm 10 trên trục hoành .Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1Chứng minh đồ thị hàm số luôn đi...
Đọc tiếp

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ 
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2 
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y 
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x 
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục

4
6 tháng 1 2019

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

6 tháng 1 2019

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

7 tháng 11 2017

Bài 3 làm sao v ạ?

9 tháng 2 2021

a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .

\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)

\(\Rightarrow a=-\dfrac{1}{2}\)

b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)

\(\Leftrightarrow3x+2=2mx-x+8\)

\(\Leftrightarrow3x+2-2mx+m-8=0\)

\(\Leftrightarrow x\left(3-2m\right)=6-m\)

- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)

\(\Leftrightarrow m\ne\dfrac{3}{2}\)

Vậy ...

 

a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên

Thay x=6 và y=0 vào hàm số y=ax+3, ta được:

\(6a+3=0\)

\(\Leftrightarrow6a=-3\)

hay \(a=-\dfrac{1}{2}\)

Vậy: \(a=-\dfrac{1}{2}\)

b)

Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)

\(\Leftrightarrow2m\ne1\)

hay \(m\ne\dfrac{1}{2}\)(1)

Để (d) cắt (d') thì \(2m-1\ne3\)

\(\Leftrightarrow2m\ne4\)

hay \(m\ne2\)(2)

Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)

1: Để (d)//(d') thì \(\left\{{}\begin{matrix}m-3=1\\2\ne-5\left(đúng\right)\end{matrix}\right.\)

=>m-3=1

=>m=4

Thay m=4 vào (d), ta được:

\(y=\left(4-3\right)x+2=x+2\)

Vẽ đồ thị:

loading...

2: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m-3\right)x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(m-3\right)=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{2}{m-3}\\y=0\end{matrix}\right.\)

Vậy: \(A\left(-\dfrac{2}{m-3};0\right)\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m-3\right)\cdot x+2=0\left(m-3\right)+2=2\end{matrix}\right.\)

vậy: B(0;2)

\(OA=\sqrt{\left(-\dfrac{2}{m-3}-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(-\dfrac{2}{m-3}\right)^2+0^2}=\dfrac{2}{\left|m-3\right|}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=2\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OBA}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot\dfrac{2}{\left|m-3\right|}=\dfrac{2}{\left|m-3\right|}\)

Để \(S_{OAB}=2\) thì \(\dfrac{2}{\left|m-3\right|}=2\)

=>|m-3|=1

=>\(\left[{}\begin{matrix}m-3=1\\m-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\\m=2\end{matrix}\right.\)