Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét (O) có, ^AMB=^ANB=^NBM=^NAM=90 độ ( góc nội tiếp chắn nửa đt)
Xét tứ giác ANBM có : ^AMB=^ANB=^NBM=90 độ (cmt)
=> TG ANBM là hcn
Phương trình đường thẳng có dạng : \(y=ax+b\left(a\ne0\right)\)
Đường thẳng đi qua \(A\left(1;1\right)\Rightarrow1=a+b\)
Mà đường thẳng cắt (d2) tạo thành tam giác vuông
\(\Rightarrow4a=-1\Rightarrow a=-\dfrac{1}{4}\)
Ta có pt : \(1=b-\dfrac{1}{4}\Leftrightarrow b=\dfrac{5}{4}\)
Vậy phương trình đường thẳng là \(y=-\dfrac{1}{4}x+\dfrac{5}{4}\)
Pt tọa độ giao điểm 2 đường thẳng:
\(\left\{{}\begin{matrix}x+y=m\\mx+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x=-\left(m-1\right)\\x+y=m\end{matrix}\right.\)
Để 2 đường thẳng cắt nhau \(\Leftrightarrow m\ne1\)
Khi đó ta có: \(\left\{{}\begin{matrix}x=-1\\y=m+1\end{matrix}\right.\)
Mà giao điểm thuộc (P) nên tọa độ của chúng phải thỏa mãn pt (P)
\(\Rightarrow m+1=-2\left(-1\right)^2\Rightarrow m=-3\)
1) gọi đường thẳng cần tìm là y=ax+b(d1)
vì đt d1 vuông góc vs đt y=2x-1 nên:
a.2=-1 <=> a= \(\dfrac{-1}{2}\)
vì đt d1 đi qua điểm M (-1;1) nên ta có pt:
1=\(\dfrac{-1}{2}\) .(-1)+b <=> b=\(\dfrac{1}{2}\)
Vậy h/s cần tìm là y=\(\dfrac{-1}{2}\) x+\(\dfrac{1}{2}\)
2) gọi đường thẳng cần tìm là y=ax+b(d)
vì đt d // đt y=3x+1 nên:
a=3
vì đt d cắt trục tung tại điểm có tung độ bằng 4 nên : b=4
vậy h/s cần tìm là y=3x+4
3) đk :m\(\ne\)2
vì đt y=2x-1 cắt tại tung độ tại điểm có tung độ bằng -x nên ta có pt :
-x=2x-1 <=> x=\(\dfrac{1}{3}\)
Ta có đt y=mx+1 cắt tại tung độ tại điểm có tung độ bằng -x nên ta có pt :
-\(\dfrac{1}{3}\) =m.\(\dfrac{1}{3}\) +1 <=> m=-4 (tmđk )
Vậy để y=mx+1 va y=2x-1 cắt nhau tại điểm thuộc y=-x thì m= -4