\(2x^2y^3\) + \(5y^2x^3\) ;
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

1) a)

=\(\left(4-1+8\right)x^2=11x^2\)

b) =\(\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)x^2y^2=\dfrac{3}{4}x^2y^2\)

c) =(3-7+4-6)y=5y 2) a) ...=\(\left[\left(\dfrac{-2}{3}y^3\right)-\dfrac{1}{2}y^3\right]+3y^2-y^2\\ =\left[\left(\dfrac{-2}{3}-\dfrac{1}{2}\right)y^3\right]+\left(3-1\right)y^2=\dfrac{-7}{6}y^3+2y^2\) b) ...=\(\left(5x^3-x^3\right)-\left(3x^2+4x^2\right)+\left(x-x\right)=4x^3-7x^2\) 3) a)A=\(\left(5.\dfrac{1}{2}\right).\left(x.x^2.x\right)\left(y^2.y^2\right)=\dfrac{5}{2}x^4y^4\) b)Vậy Đơn thức A có bậc 8; hệ số là \(\dfrac{5}{2}\); phần biến là \(x^4y^4\) c)Khi x=1;y=-1 thì A=\(\dfrac{5}{2}.1^4.\left(-1\right)^4=\dfrac{5}{2}\)

23 tháng 3 2017

a) Các đơn thức đồng dạng là:

\(2x^2y^3\)\(\dfrac{-1}{2}x^2y^3\); \(5y^2x^3\)\(\dfrac{-1}{2}x^2y^3\)

b) Ta có:

\(F=2x^2y^3+5y^2x^3+\dfrac{-1}{2}x^3y^2+\dfrac{-1}{2}x^2y^3\)

\(=\left(2x^2y^3+\dfrac{-1}{2}x^2y^3\right)+\left(5y^2x^3+\dfrac{-1}{2}x^3y^2\right)\)

\(=\dfrac{3}{2}x^2y^3+\dfrac{9}{2}x^3y^2\)

c) Tại \(x=-3;y=2\) thì:

\(F=\dfrac{3}{2}\left(-3\right)^2.2^3+\dfrac{9}{2}.\left(-3\right)^3.2^2\)

\(=108-486=-378.\)

23 tháng 3 2017

a) Các đơn thức đồng dạng là:

- 2x\(^2\)y\(^3\)\(\dfrac{-1}{2}\)x\(^2\)y\(^3\)

- 5y\(^2\)x\(^3\)\(\dfrac{-1}{2}\)x\(^3\)y\(^2\)

b) F = 2x\(^2\)y\(^3\) + 5y\(^2\)x\(^3\) + (\(\dfrac{-1}{2}\))x\(^3\)y\(^2\) + (\(\dfrac{-1}{2}\))x\(^2\)y\(^3\)

= [ 2x\(^2\)y\(^3\) + (\(\dfrac{-1}{2}\))x\(^2\)y\(^3\) ] + [ 5y\(^2\)x\(^3\) + (\(\dfrac{-1}{2}\))x\(^3\)y\(^2\) ]

= \(\dfrac{3}{2}\)x\(^2\)y\(^3\) + \(\dfrac{9}{2}\)y\(^2\)x\(^3\)

Vậy đa thức F có giá trị là: \(\dfrac{3}{2}\)x\(^2\)y\(^3\) + \(\dfrac{9}{2}\)y\(^2\)x\(^3\)

c) Thay x = -3 và y = 2 vào đa thức F đã cho, ta có:

\(\dfrac{3}{2}\) . (-3)\(^2\) . 2\(^3\) + \(\dfrac{9}{2}\) . 2\(^2\) . (-3)\(^3\) = 108 + (-486) = 108 - 486 = -378

Vậy tại x = -3 và y = 2, giá trị của đa thức F là: -378

31 tháng 5 2018

Giải:

a) \(2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)

Bậc của đơn thức: \(3+4+2=9\)

b) \(\left(-12xyz\right)\left(\dfrac{-4}{3}x^2yz^3\right)y=16x^3y^3z^4\)

Bậc của đơn thức: \(3+3+4=10\)

c) \(-2x^2y\left(-3xy^2\right)^3=-2x^2y\left(-27x^3y^6\right)=54x^5y^7\)

Bậc của đơn thức: \(5+7=12\)

d) \(12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2=6x^4\left(\dfrac{4}{25}x^6y^2\right)=\dfrac{24}{25}x^{10}y^2\)

Bậc của đơn thức: \(10+2=12\)

31 tháng 5 2018

\(a,2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)

Bậc của đơn thức là 9

\(b,\left(-12xyz\right)\left(-\dfrac{4}{3}x^2yz^3\right)y=16x^3y^3z^4\)

Bậc của đơn thức: 10

\(c,-2x^2y\left(-3xy^2\right)^3\)

\(-2x^2y.\left(-27\right)x^3y^6=54x^5y^7\)

Bậc của đơn thức: 12

\(d,12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2\)

\(=12\dfrac{1}{2}x^4\cdot\dfrac{4}{25}x^6y^2=2x^{10}y^2\)

Bậc của đơn thức : 12

16 tháng 6 2020

\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)

Hệ số 3/5

\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)

Hệ số 4

Làm nốt b Quỳnh đag lm dở.

Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)

\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)

\(P\left(x\right)=x^2-2\)

Ta có : \(P\left(x\right)=x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

28 tháng 5 2018

\(a,Đặt\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\\ A=\dfrac{2x-3y}{x-5y}=\dfrac{2\cdot2k-3\cdot3k}{2k-5\cdot3k}\\ =\dfrac{4k-9k}{2k-15k} \\ =\dfrac{5k}{13k}\\ =\dfrac{5}{13}\)

\(b,Thayx-y=7vàoB,tacó:\\ B=\dfrac{2x+7}{3x-y}+\dfrac{2y-7}{3y-x}\\ =\dfrac{2x+x-y}{3x-y}+\dfrac{2y-x+y}{3y-x}\\ =\dfrac{3x-y}{3x-y}+\dfrac{3y-x}{3y-x}\\ =1+1\\ =2\)

\(c,Đặt\dfrac{x}{3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\\ C=\dfrac{5x^2+3y^2}{10x^2-3y^2}\\ =\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\\ =\dfrac{45k^2+75k^2}{90k^2-75k^2}\\ =\dfrac{120k^2}{15k^2}\\ =8\)

\(d,\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=k\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\\ D=\dfrac{5a-b}{3a-2b}\\ =\dfrac{5\cdot5k-7k}{3\cdot5k-2\cdot7k}\\ =\dfrac{25k-7k}{15k-14k}\\ =\dfrac{18k}{k}=18\)

\(e,Thayx-y=5vàoE,tacó:\\ E=\dfrac{3x-5}{2x+y}-\dfrac{4y+5}{x+3y}\\ =\dfrac{3x-x+y}{2x+y}-\dfrac{4y+x-y}{x+3y}\\ =\dfrac{2x+y}{2x+y}-\dfrac{3y+x}{x+3y}\\ =1-1=0\)

22 tháng 7 2017

1.\(A=-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)

\(A.\left(B+C\right)=-\dfrac{3}{4}x^2yz\left[\dfrac{1}{3}xy^2+\left(-\dfrac{8}{7}xy^2\right)\right]\)

\(=-\dfrac{3}{4}x^2yz\left(\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2\right)\)

\(=\left(-\dfrac{3}{4}x^2yz\right)\dfrac{1}{3}xy^2-\left(-\dfrac{3}{4}x^2yz\right)\dfrac{8}{7}xy^2\)

\(=-\dfrac{1}{4}x^3y^3z+\dfrac{6}{7}x^3y^3z\)

22 tháng 7 2017

1. Ta có: \(-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)

\(B+C=\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2=-\dfrac{17}{21}xy^2\)

\(A.\left(B+C\right)=\left(-\dfrac{3}{4}x^2yz\right).\left(-\dfrac{17}{21}xy^2\right)\)

\(\Rightarrow A.\left(B+C\right)=\dfrac{17}{28}x^3y^3z\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Lời giải:

\(x^3y^2(xy^2)=x^3.x.y^2.y^2=x^4y^4\)

\(-3x^3y.\frac{1}{5}x^2y=\frac{-3}{5}x^3.x^2.y.y=\frac{-3}{5}x^5y^2\)

\(\frac{2}{5}x^3\frac{1}{2}(xy)^2=\frac{1}{5}x^3.x^2.y^2=\frac{1}{5}x^5y^2\)

\(\frac{1}{2}(xy)^2\frac{2}{5}(xy)^2=\frac{1}{5}x^2.x^2.y^2.y^2=\frac{1}{5}x^4y^4\)

Vậy các đơn thức phần a,b,c đồng dạng với nhau; đơn thức d và e đồng dạng với nhau.