Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m^2+2m=0\)
\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi m khác 1
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)
Thay vào ta được \(2x_1+m^2+2x_2=5m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)
b) x2-2x-m2+2m=0
Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1
KL:....
c) với m≠1 thì PT có 2 nghiệm PB
C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)
tt. tính x2
C2.
Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)
Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)
Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:
\(P=x_1\left(2-x_1\right)=-m^2+2m\)
⇔2x1-x12=-m2+2m
⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)
⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)
Vậy với m=4 thì .....
Phương trình hoành độ giao điểm:
x2 = 2x - m
<=> x2 - 2x + m = 0
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)
<=> (-1)2 - m > 0
<=> 1 - m > 0
<=> m < 1
Ta có: y1 = x12
y2 = x22
y1 + y2 + x12x22 = 6(x1 + x2)
<=> x12 + x22 + x12x22 = 6(x1 + x2)
<=> (x1 + x2)2 - 2x1x2 + (x1x2)2 = 6(x1 + x2)
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
<=> 22 - 2m + m2 = 6.2
<=> 4 - 2m + m2 = 12
<=> 4 - 2m + m2 - 12 = 0
<=> m2 - 2m - 8 = 0
<=> m = 4 (ktm) hoặc m = -2 (tm)
=> m = -2
a) PT hoành dộ giao điểm d và (P):
x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)
d tiếp xúc với (P) <=> m=-2 tìm được x=-1
Tọa độ điểm A(-1;1)
b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1
Điều kiện để 2 giao điểm khác phía trục tung là:m >-1
Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)
Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)
Gọi các điểm thỏa mãn điều kiện có tọa độ là \(\left(a;0\right)\)
Khi đó hệ sau có nghiệm nguyên:\(\hept{\begin{cases}a-2y=3\\a-3y=2\\x-5y=-7\end{cases}\Rightarrow\frac{a-3}{2};\frac{a-2}{3};\frac{a+7}{5}}\) nguyên.
TH1: \(a\ge0.\)
\(\frac{a-3}{2}\in Z\) nên a lẻ; \(\frac{a+7}{5}\in Z\Rightarrow\) a chia 5 dư 3. Kết hợp hai điều kiện trên thì a có tận cùng là 3.
Khi đó a - 2 có tận cùng là 1. Vậy để \(\frac{a-2}{3}\in Z\) thì a - 2 = 34k \(\left(k\in N;k\ge1\right)\)
Vậy a = 2 +34k \(\left(k\in N;k\ge1\right)\)
TH2: a < 0
\(\frac{a-3}{2}\in Z\Rightarrow\)- a là số tự nhiên lẻ. \(\frac{a+7}{5}\in Z\Rightarrow\) -a chia 5 dư 2. Vậy -a có tận cùng là 7, vậy a có tận cùng là 7.
Vậy thì a - 2 có tận cùng là 9. Vậy a - 2 = -34k+2 \(\left(k\in N;k\ge0\right)\)
Hay a = 2 - 34k+2 \(\left(k\in N;k\ge0\right)\)
Tóm lại các điểm thỏa mãn điều kiện của đề bài sẽ có tọa độ là \(\left(2+3^{4k};0\right)\) với \(\left(k\in N;k\ge1\right)\) hoặc \(\left(2-3^{4k+2};0\right)\) với \(\left(k\in N;k\ge0\right)\)