Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
– Tọa độ trọng tâm G của tam giác ABC là:
– Tọa độ trực tâm H của tam giác ABC:
Cách 1:
+ Phương trình đường cao BD:
BD ⊥ AC ⇒ Đường thẳng BD nhận là một vtpt
BD đi qua B(2; 7)
⇒ Phương trình đường thẳng BD: 7(x - 2) +11(y - 7) = 0 hay 7x + 11y – 91 = 0
+ Phương trình đường cao CE:
CE ⊥ AB ⇒ Đường thẳng CE nhận là một vtpt
CE đi qua C(–3; –8)
⇒ Phương trình đường thẳng CE: 1(x + 3) – 2(y + 8)=0 hay x – 2y – 13 = 0.
Trực tâm H là giao điểm của BD và CE nên tọa độ của H là nghiệm của hpt:
Cách 2: Gọi H(x, y) là trực tâm tam giác ABC
Từ (1) và (2) ta có hệ phương trình
b) Gọi T(x; y) là tâm đường tròn ngoại tiếp tam giác ABC
Khi đó TA = TB = TC = R.
+ TA = TB ⇒ AT2 = BT2
⇒ (x – 4)2 + (y – 3)2 = (x – 2)2 + (y – 7)2
⇒ x2 – 8x + 16 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 14y + 49
⇒ 4x – 8y = –28
⇒ x – 2y = –7 (1)
+ TB = TC ⇒ TB2 = TC2
⇒ (x – 2)2 + (y – 7)2 = (x + 3)2 + (y + 8)2
⇒ x2 – 4x + 4 + y2 – 14y + 49 = x2 + 6x + 9 + y2 + 16y + 64
⇒ 10x + 30y = –20
⇒ x + 3y = –2 (2)
Từ (1) và (2) ⇒ x = –5, y = 1 ⇒ T(–5 ; 1).
⇒ T, H, G thẳng hàng.
c) Tâm đường tròn ngoại tiếp ΔABC: T(–5; 1)
Bán kính đường tròn ngoại tiếp ΔABC:
Vậy phương trình đường tròn ngoại tiếp tam giác ABC:
(x + 5)2 + (y – 1)2 = 85
a: vecto AB=(1;-1); vecto AC=(2;1); vecto BC=(1;2)
AB có VTPT là (1;1)
Phương trình AB là;
1(x-1)+1(y+1)=0
=>x+y=0
AC có VTPT là (-1;2)
PT AC là:
-1(x-1)+2(y+1)=0
=>-x+1+2y+2=0
=>-x+2y+3=0
BC có VTPT là (-2;1)
PT BC là;
-2(x-2)+1(y+2)=0
=>-2x+y+6=0
b: AH có VTPT là (1;2)
Phương trình AH là:
1(x-1)+2(y+1)=0
=>x-1+2y+2=0
=>x+2y+1=0
a: vecto AB=(1;-1); vecto AC=(2;1); vecto BC=(1;2)
AB có VTPT là (1;1)
Phương trình AB là;
1(x-1)+1(y+1)=0
=>x+y=0
AC có VTPT là (-1;2)
PT AC là:
-1(x-1)+2(y+1)=0
=>-x+1+2y+2=0
=>-x+2y+3=0
BC có VTPT là (-2;1)
PT BC là;
-2(x-2)+1(y+2)=0
=>-2x+y+6=0
b: AH có VTPT là (1;2)
Phương trình AH là:
1(x-1)+2(y+1)=0
=>x-1+2y+2=0
=>x+2y+1=0