Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(M=\left(-2x^4+x^2+5\right)-\left(5x^2-x^3+4x\right)\)
\(=-2x^4+x^2+5-5x^2+x^3-4x\)
\(=-2x^4+x^3-4x^2-4x+5\)
Vậy...
b/ \(M=-2x^4+x^2+5+5x^2-x^3+4x\)
\(=-2x^4-x^4+6x^2+4x+5\)
Vậy...
c/ \(M=\left(5x^2-x^3+4x\right)-\left(-2x^4+x^2+5\right)\)
\(=5x^2-x^3+4x+2x^4-x^2-5\)
\(=2x^4-x^3+4x^2-5\)
Vậy...
d/ \(M=-\left(5x^2-x^3+4x\right)\)
\(=x^4-5x^2-4x\)
Vậy..
a)Đang suy nghĩ...
b)\(M\left(x\right)=\left(x^2-3x\right)+\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
a) \(12x^{11}-15x^7-6x^5+2018\)
\(=3x^5.\left(4x^6-5x^2-2\right)+2018\)
\(=3x^5.0+2018\)
\(=2018\)
1.
a, (x-5)2
Ta có x2 luôn \(\ge\) 0 với mọi x, suy ra: (x-5)2 \(\ge\) 0 với mọi x
Nên: (x-5)2 \(\ge\) 0 với mọi x
Suy ra: đa thức này không có nghiệm.
a)
ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)
Vậy TXĐ của $x$ là \(D= [0;+\infty)\)
b)
ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)
c)
ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)
d)
ĐK:
\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)
Vậy TXĐ \(D=\mathbb{R}\)
e)
ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)
f)
ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)