K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

c) thay x=1 vào đa thức f(x) ta có:  f(1)=4.1^3-1^2+2.1-5

                                                             =4-2+2-5

                                                             =- 1

    vậy 1 k phải là nghiệm của đa thức f(x)

MÌNH CHỈ LÀM ĐƯỢC C THÔI HOK TỐT

31 tháng 5 2019

làm sai nha chỗ nào là 1 thì thay bằng -1 nha kq sẽ ra nha

27 tháng 8 2021

Mik mới bít ý b thôi , còn ý a mik đang nghĩ nha ^^

undefined

23 tháng 10 2016

bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi

2 tháng 11 2016

sao nhìu... z p , đăq từq câu 1 thôy nha p

20 tháng 10 2016

Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à

20 tháng 10 2016

đúng rồi pn. giúp mik đc bài nào cũng đc

a) Ta có: \(x^2+4x+3\)

\(=x^2+x+3x+3\)

\(=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

b) Ta có: \(16x-5x^2-3\)

\(=-5x^2+16x-3\)

\(=-5x^2+15x+x-3\)

\(=-5x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x-3\right)\left(-5x+1\right)\)

c) Ta có: \(2x^2+7x+5\)

\(=2x^2+2x+5x+5\)

\(=2x\left(x+1\right)+5\left(x+1\right)\)

\(=\left(x+1\right)\left(2x+5\right)\)

d) Ta có: \(2x^2+3x-5\)

\(=2x^2+5x-2x-5\)

\(=x\left(2x+5\right)-\left(2x+5\right)\)

\(=\left(2x+5\right)\left(x-1\right)\)

e) Ta có: \(x^3-3x^2+1-3x\)

\(=\left(x+1\right)\cdot\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

f) Ta có: \(x^2-4x-5\)

\(=x^2-4x+4-9\)

\(=\left(x-2\right)^2-3^2\)

\(=\left(x-2-3\right)\left(x-2+3\right)\)

\(=\left(x-5\right)\left(x+1\right)\)

g) Ta có: \(\left(a^2+1\right)^2-4a^2\)

\(=\left(a^2+1\right)^2-\left(2a\right)^2\)

\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)

\(=\left(a-1\right)^2\cdot\left(a+1\right)^2\)

h) Ta có: \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(x^4+x^3+x+1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

k) Ta có: \(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

l) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=3x\left(x+2\right)\)

m) Ta có: \(x^4+4x^2-5\)

\(=x^4-x^2+5x^2-5\)

\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

14 tháng 8 2017

My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé

https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N

14 tháng 8 2017

Ko biết đợi đứa khác đê

28 tháng 7 2017

a, \(x^3-x^2y-xy^2+y^3\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x^2-y^2\right)\left(x-y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

b, \(x^3+x^2-4x-4\)

\(=x^2\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x^2-4\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)

c, \(x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)\)

\(=\left(x-1\right)^2\left(x+1\right)\)

d, \(\left(7x+3\right)^2-\left(2x-1\right)^2\)

\(=\left(7x+3-2x+1\right)\left(7x+3+2x-1\right)\)

\(=\left(5x+4\right)\left(9x+2\right)\)

e, \(x^3-3x^2-3x+1\) sai đề

f, \(x^2-2x-3\)

\(=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x+1\right)\left(x-3\right)\)

g, \(x^2-2x-8\)

\(=x^2-4x+2x-8=x\left(x-4\right)+2\left(x-8\right)\)

\(=\left(x+2\right)\left(x-8\right)\)

h, \(x^2-10x+21\)

\(=x^2-7x-3x+21\)

\(=x\left(x-7\right)-3\left(x-7\right)=\left(x-3\right)\left(x-7\right)\)

i, \(x^2-4xy+3y^2\)

\(=x^2-4xy+4y^2-y^2\)

\(=\left(x-2y\right)^2-y^2\)

\(=\left(x-2y-y\right)\left(x-2y+y\right)\)

\(=\left(x-3y\right)\left(x-y\right)\)

28 tháng 7 2017

a) \(x^3 - x^2y - xy^2 + y^3\)

\(=\left(x^3-x^2y\right)-\left(xy^2-y^3\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

b) \(x^3 + x^2 - 4x - 4\)

\(=\left(x^3+x^2\right)-\left(4x+4\right)\)

\(=x^2\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4\right)\)

\(=\left(x+1\right)\left(x^2-2^2\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\)

17 tháng 7 2018

d) mk chỉnh lại đề

  \(8xy^2-5xyz-24y+15z\)

\(=xy\left(8y-5z\right)-3\left(8y-5z\right)\)

\(=\left(8y-5z\right)\left(xy-3\right)\)

e)   \(x^4-x^3-x+1=\left(x-1\right)^2\left(x^2+x+1\right)\)

f)  \(x^4+x^2y^2+y^4=\left(x^2-xy+y^2\right)\left(x^2+xy-y^2\right)\)

g)  \(x^3+3x-4=\left(x-1\right)\left(x^2+x+4\right)\)

h)   \(x^3-3x^2+2=\left(x-1\right)\left(x^2-2x-2\right)\)

i)  \(2x^3+x^2-4x-12=\left(x-2\right)\left(2x^2+5x+6\right)\)

k)  \(25x^2\left(x-5\right)-x+y=\left(1-5x\right)\left(1+5x\right)\left(y-x\right)\)

30 tháng 9 2017

nhiều

30 tháng 9 2017

bt mà bn