K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

\(A+B+C=\left(5x^2+6xy-7y^2\right)+\left(-9x^2-8xy+11y^2\right)+\left(6x^2+2xy-3y^2\right)\\ =\left(5x^2-9x^2+6x^2\right)+\left(6xy-8xy+2xy\right)+\left(-7y^2+11y^2-3y^2\right)\\ =2x^2+y^2\)

Ta có :

\(2x^2+y^2\ge0\forall x;y\\ \Rightarrow\left[{}\begin{matrix}A< 0\\B< 0\\C< 0\end{matrix}\right.\\ \RightarrowĐpcm\)

Giải thử thôi, chắc là sai á!!

12 tháng 5 2018

Giả sử rằng cả A, B, C đều âm. Như vậy thì A+B+C<0

\(\Leftrightarrow5x^2+6xy-7y^2-9x^2-8xy+11y^2+6x^2+2xy-3y^2< 0\)

\(\Leftrightarrow2x^2+y^2< 0\)là điều vô lý (vì cả 2 số hạng đều không âm)

Do đó A, B, C không thể cùng có giá trị âm.

12 tháng 5 2018

Ta có \(A+B+C=\left(5x^2+6xy-7y^2\right)+\left(-9x^2-8xy+11y^2\right)+\left(6x^2+2xy-3y^2\right)\)

=> \(A+B+C=\left(5x^2+6x^2-9x^2\right)+\left(6xy+2xy-8xy\right)+\left(11y^2-3y^2-7y^2\right)\)

=> \(A+B+C=2x^2+y^2\)

Mà \(2x^2\ge0\)và \(y^2\ge0\)

=> \(A+B+C=2x^2+y^2\ge0\)

=> A, B, C không thể có cùng giá trị âm (đpcm)

26 tháng 3 2018

a, P = A + B = (5x\(^2\) - 3xy + 7y\(^2\)) + (6x\(^2\) - 8xy + 9y\(^2\))

= 5x\(^2\) - 3xy + 7y\(^2\) + 6x\(^2\) - 8xy + 9y\(^2\)

= (5x\(^2\) + 6x\(^2\)) + (-3xy - 8xy) + (7y\(^2\) + 9y\(^2\))

= 11x\(^2\) - 11xy + 16y\(^2\)

Q = A - B = (5x\(^2\) - 3xy + 7y\(^2\)) - (6x\(^2\) - 8xy + 9y\(^2\))

= 5x\(^2\) - 3xy + 7y\(^2\) - 6x\(^2\) + 8xy - 9y\(^2\)

= (5x\(^2\) - 6x\(^2\)) + (-3xy + 8xy) + (7y\(^2\) - 9y\(^2\)) = -x\(^2\) + 5xy - 2y\(^2\)

b, M = P - Q = (11x\(^2\) - 11xy + 16y\(^2\)) - (-x \(^2\)+ 5xy - 2y\(^2\))

= 11x\(^2\) - 11xy + 16y\(^2\) + x\(^2\) - 5xy + 2y\(^2\)

= (11x\(^2\) + x\(^2\)) + (-11xy - 5xy) + (16y\(^2\) + 2y\(^2\))

= 12x\(^2\) - 16xy + 18y\(^2\)

Thay x = 1 , y = 2 vào biểu thức M

Ta có : M = 12x\(^2\) - 16xy + 18y\(^2\)

= 12 . 1\(^2\) - 16 . 1 . 2 + 18 .2\(^2\)

= 12 - 32 + 72

= 52

1 tháng 4 2018

Cộng, trừ đa thức

17 tháng 6 2018

A + B - C = \(x^2-2x\)\(+3xy^2-x^2y+x^2y^2\)\(+\left(-2x^2\right)+3y^2-5x+y+3\)\(-\left(3x^2-2xy+7y^2-3x-5y-6\right)\)

\(x^2-2x+3xy^2-x^2y+x^2y^2-2x^2+3y^2-5x+y+3-3x^2+2xy-7y^2+3x+5y+6\)

=  \(-4x^2+3xy^2-4x-4y^2+6y+2xy+9\)

A-B+C=\(x^2-2x+3xy^2-x^2y+x^2y^2\)\(-\left(-2x^2+3y^2-5x+y+3\right)\)\(+3x^2-2xy+7y^2-3x-5y-6\)

 = \(x^2-2x+3xy^2-x^2y+x^2y^2+2x^2-3y^2+5x-y-3\)\(+3x^2-2xy+7y^2-3x-5y-6\)

\(6x^2+3xy^2+4y^2-2xy-6y-9\)

-A+B+C =\(-\left(x^2-2x+3xy^2-x^2y+x^2y^2\right)\)\(-2x^2+3y^2-5x+y+3+3x^2-2xy+7y^2\)\(-3x-5y-6\)

\(-x^2+2x-3xy^2+x^2y-x^2y^2\)\(-2x^2+3y^2-5x+y+3\)\(+3x^2-2xy+7y^2-3x-5y-6\)

\(-6x+10y^2-3xy^2-4y-2xy-3\)

còn bậc cậu tự tìm nha bậc để mà

14 tháng 3 2018

Ta có: \(A.B.C=\frac{-1}{2}x^2yz^2\cdot\left(\frac{-3}{4}\right)xy^2z^2\cdot x^3y\)

\(=\left[\left(\frac{-1}{2}\right)\cdot\left(\frac{-3}{4}\right)\right]\left(x^2yz^2xy^2z^2x^3y\right)\)

\(=\frac{3}{8}x^6y^4z^4\)

Nếu cùng âm thì tích của chúng phải âm mà  \(A.B.C=\frac{3}{8}x^6y^4z^4\ge0\)

Vậy các đơn thức A,B,C không thể cùng nhận giá trị âm

14 tháng 3 2018

Giúp với!