K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(M=\dfrac{A}{B}\)

\(=\dfrac{x-3}{x+2}:\dfrac{-2}{x+2}\)

\(=\dfrac{x-3}{-2}\)

Để |M|=-M thì \(M\le0\)

\(\Leftrightarrow x\ge3\)

a: Ta có: \(A=\dfrac{1}{2}\)

\(\Leftrightarrow x+2=2x-6\)

\(\Leftrightarrow-x=-8\)

hay x=8

Thay x=8 vào B,ta được:

\(B=-\dfrac{2}{8+2}=-\dfrac{2}{10}=-\dfrac{1}{5}\)

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(B=\dfrac{6-7x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{2}{2-x}\)

\(=\dfrac{6-7x+3x-6+2x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{-2x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=-\dfrac{2}{x+2}\)

27 tháng 12 2018

Câu 1 chưa rõ đề !

Câu 2 :

a ) ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

b ) \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

c ) \(P=2\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)

27 tháng 12 2018

2, a,ĐKXĐ:\(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\left\{{}\begin{matrix}\sqrt{x}-2\ne0\\\sqrt{x}+2\ne0\\4-x\ne0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b,\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
c, P=2\(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)
\(\Leftrightarrow3\sqrt{x}=2\left(\sqrt{x}+2\right)\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)
Vậy x=16 thì P có giá trị =2

14 tháng 7 2018

a) ĐKXĐ: x ≥ 0, x # 9

(quá trình thì b tự làm nha)

b) Ta có:

\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

= \(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+7\sqrt{x}+4-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x-3}\right)}\)

= \(\dfrac{2x-3\sqrt{x}+7\sqrt{x}+4-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

= \(\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

= \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

Vậy A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\) với x ≥ 0, x # 9

c) ĐKXĐ: x ≥ 0, x # 9, x ∈ Z

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-2}{\sqrt{x}+2}=1-\dfrac{2}{\sqrt{x}+2}\)

Để A có gtn ⇔ \(1-\dfrac{2}{\sqrt{x}+2}\) nguyên ⇔ \(\dfrac{2}{\sqrt{x}+2}\) nguyên

\(\sqrt{x}+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}+2\in\left\{1;2\right\}\) (Vì \(\sqrt{x}+2>0\))

Nếu \(\sqrt{x}+2=1\)thì \(\sqrt{x}=-1\) (Vô nghiệm)

Nếu \(\sqrt{x}+2=2\) thì \(\sqrt{x}=0\Leftrightarrow x=0\)(TMĐK)

Vậy để A có gtn thì x = 0

1 tháng 8 2018

a/ đkxđ: x > 0; x≠1

b/ \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right):\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{2\sqrt{x}}\cdot\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1}{2\sqrt{x}}\cdot\dfrac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)

\(=\dfrac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)

1 tháng 8 2018

c/ A > -6

\(\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)

kết hợp với đkxđ => 0 < x < 9

8 tháng 8 2018

a) Rut gon H

\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)

\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)

DKXD : \(\left\{{}\begin{matrix}\sqrt{a}+3\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ne9\\a\ne4\end{matrix}\right.\)

Ta co : \(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{a-\sqrt{a}-6}{a+\sqrt{a}-6}\)