K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2019

\(A=\left(\frac{1+\sqrt{3}}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\frac{1-\sqrt{3}}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\right).\sqrt{3}\)

\(=\left(\frac{1+\sqrt{3}-1+\sqrt{3}}{-2}\right).\sqrt{3}=-3\)

\(B=\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)

Để \(A=\frac{B}{6}\Leftrightarrow B=6A\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}}=-18\)

\(\Rightarrow\sqrt{x}-1=-18\sqrt{x}\Rightarrow\sqrt{x}=\frac{1}{19}\Rightarrow x=\frac{1}{361}\)

Bài 1 : 

a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)

\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)

\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)

\(A=\sqrt{7}-\sqrt{28}\)

\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)

Vậy \(A=-\sqrt{7}\)

b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)

\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)

\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)

\(B=a-b\)

Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)

_Minh ngụy_

Bài 2 :

a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)

Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))

Vậy \(x>1\)thì \(B>0\)

_Minh ngụy_

16 tháng 8 2019

A=\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right)\):\(\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)Đk x>0 x#0 x#1

=\(\frac{x-1}{\sqrt{x}\left(\sqrt{x-1}\right)}\):\(\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

=\(\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+1}{\left(\sqrt{x-1}\right)\left(\sqrt{x}+1\right)}\)

=\(\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)

=\(\frac{\sqrt{x}+1}{\sqrt{x}}.\sqrt{x}-1\)

=\(\frac{x-1}{\sqrt{x}}\)

Ta có 3+\(2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)(thay và A ta dc

=>\(\frac{3+2\sqrt{2}-1}{\sqrt{2}+1}\)

= \(\frac{2\sqrt{2}+2}{\sqrt{2}+1}\)

=2

16 tháng 8 2019

mk nhầm....\(\frac{x-1}{\sqrt{x}}>0\)=> \(x-1>0\Rightarrow x>1\)

mk làm r nhé

2 tháng 4 2020

a) đkxđ: \(\left\{{}\begin{matrix}\sqrt{x}-1\ne0\\x-1\ne0\\\frac{1}{\sqrt{x}+1}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{x-1}\right):\frac{1}{\sqrt{x}+1}\)

\(\Leftrightarrow\frac{1\left(\sqrt{x}+1\right)-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{x}-1}\)

b) Để \(A< 0\Rightarrow\frac{1}{\sqrt{x}+1}< 0\)

\(\Rightarrow\sqrt{x}+1< 0\) ( do \(1>0\))

\(\Rightarrow\sqrt{x}< -1\)(vô lý)

=> k tìm dc x thỏa mãn

18 tháng 2 2020

Ta có :

\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right).\left(\sqrt{x}+2\right)\)

\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)\)

\(=\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

16 tháng 8 2019

C =\(\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

=\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)

=1-x

16 tháng 8 2019

C=\(\left(1-\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\).\(\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

=\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)

=\(1-x\)

19 tháng 7 2017

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

27 tháng 7 2019

1) ĐKXĐ: \(x>0;x\ne4;x\ne9\)

(*lười lắm, ko chép lại đề nha :V*)

\(P=\frac{\left(2+\sqrt{x}\right)^2+\sqrt{x}\left(2-\sqrt{x}\right)+4x+2\sqrt{x}-4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{2\sqrt{x}-\left(\sqrt{x}+3\right)}{\sqrt{x}\left(2-\sqrt{x}\right)}\\ =\frac{4+4\sqrt{x}+x+2\sqrt{x}-x+4x+2\sqrt{x}-4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\\ =\frac{4x+8\sqrt{x}}{2+\sqrt{x}}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\frac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}=\frac{4x}{\sqrt{x}-3}\)

2) Để P>0 thì

\(\frac{4x}{\sqrt{x}-3}>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x>0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x< 0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\\sqrt{x}>3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\\sqrt{x}< 3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>9\\x< 0\left(ktm\right)\end{matrix}\right.\)

Vậy với \(x>9\) thì \(P>0\).

Chúc bạn học tốt nhaok.

27 tháng 7 2019

Bạn giải thêm cho mk câu này đi

c) tìm giá trị của x để P = -1