Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c=1
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)
<=> \(a^2-ab+b^2-bc+c^2-ac=0\)
<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c
#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.
\(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^2=c^2\Rightarrow a^2+b^2-c^2=-2ab\)
Tương tự: \(a^2+c^2-b^2=-2ac,b^2+c^2-a^2=-2bc\)
Do đó: Vế trái = \(\frac{ab}{-2ab}+\frac{ac}{-2ac}+\frac{bc}{-2bc}=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}=\frac{-3}{2}\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
<=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
<=>\(ab+bc+ca=0\)
<=>\(\frac{ab+bc+ca}{abc}=0\)
<=> \(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
<=>\(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
<=>\(\left(\frac{1}{a}+\frac{1}{b}\right)^3=-\frac{1}{c}^3\)
<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=\frac{-1}{c}^3\)
<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Ta có: \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=\frac{3abc}{abc}=3\)
\(a^2+b^2+c^2+2ab-2ac-2bc=a^2+b^2\)
\(\Rightarrow\left(a+b-c\right)^2=a^2+b^2\)
\(\Rightarrow\hept{\begin{cases}a^2=\left(a+b-c\right)^2-b^2=\left(a+b-c-b\right)\left(a+b-c+b\right)=\left(a-c\right)\left(a+2b-c\right)\\b^2=\left(a+b-c\right)^2-a^2=\left(a+b-c-a\right)\left(a+b-c+a\right)=\left(b-c\right)\left(2a+b-c\right)\end{cases}}\)
\(a^2+\left(a-c\right)^2=\left(a-c\right)\left(a+2b-c\right)+\left(a-c\right)^2\)
\(=\left(a-c\right)\left(a+2b-c+a-c\right)=2\left(a-c\right)\left(a+b-c\right)\)
\(b^2+\left(b-c\right)^2=\left(b-c\right)\left(2a+b-c\right)+\left(b-c\right)^2\)
\(=\left(b-c\right)\left(2a+b-c+b-c\right)=2\left(b-c\right)\left(a+b-c\right)\)
Vậy \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2\left(a-c\right)\left(a+b+c\right)}{2\left(b-c\right)\left(a+b+c\right)}=\frac{a-c}{b-c}\)