Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.\left(25-5+1\right)\)
\(5^3.21=5^3.3.7⋮7\) (đpcm)
b) ta có : \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)\)
\(=7^4.55=7^4.5.11⋮11\) (đpcm)
c) ta có : \(3^{x+2}-2^{x+3}+3^x-2^{x+1}=3^{x+2}+3^x-2^{x+3}-2^{x+1}\)
\(=3^x\left(3^2+1\right)-2^x\left(2^3+2\right)=3^x.\left(9+1\right)-2^x.\left(8+2\right)\)
\(=3^x.10-2^x.10=10\left(3^x-2^x\right)⋮10\) (đpcm)
d) \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}=3^x.\left(3^3+3\right)+2^x.\left(2^3+2^2\right)\)
\(=3^x.\left(27+3\right)+2^x\left(8+4\right)=3^x.30+2^x.12=6.\left(3^x.5+2^x.2\right)⋮6\) (đpcm)
a)Ta có:\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21\)(vì 21 chia hết cho 7)
\(\)\(\RightarrowĐPCM\)
b)Ta có: \(7^6+7^5-7^4⋮11=7^4\left(7^2+7-1\right)=7^4.55⋮11\)
\(\Rightarrowđpcm\)
a)\(3-\left(\frac{1}{4}+\frac{2}{3}\right)-\left(5+\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
=\(3-\frac{1}{4}-\frac{2}{3}-5-\frac{1}{3}+\frac{6}{5}-6+\frac{7}{4}-\frac{3}{2}\)
=\(\left(3-5-6\right)+\left(\frac{-1}{4}+\frac{7}{4}\right)+\left(\frac{-2}{3}-\frac{1}{3}\right)+\left(\frac{6}{5}-\frac{3}{2}\right)\)
=\(-8+\frac{3}{2}-1-\frac{3}{10}\)
=\(\left(-8-1\right)+\left(\frac{3}{2}-\frac{3}{10}\right)\)
=-9+\(\frac{6}{5}\)
=\(\frac{-39}{5}\)
Ta có \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\)
Vì 53.3 là số nguyên nên \(5^3.3.7⋮7\)
Vậy \(5^5-5^4+5^3⋮7\)
c) \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}\)
\(=\left(3^{x+3}+3^{x+1}\right)+\left(2^{x+3}+2^{x+2}\right)\)
\(=3^x\left(3^2+3\right)+2^x\left(2^2+2\right)\)
\(=3^x.12+2^x.6\)
\(=6\left(2.3^x+2^x\right)\)
Vì \(2.3^x+2^x\in Z\)
Nên : \(6\left(2.3^x+2^x\right)⋮6\)
Vậy \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}⋮6\)
\(\left(\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}\right)-\left(5-\dfrac{1}{3}-\dfrac{6}{5}\right)-\left(6-\dfrac{7}{4}+\dfrac{3}{2}\right)\)
\(=\left(\dfrac{88-33+60}{132}\right)-\left(\dfrac{75-5-18}{15}\right)-\left(\dfrac{24-7+6}{4}\right)\)
\(=\dfrac{115}{132}-\dfrac{52}{15}-\dfrac{23}{4}\)
\(=-8\dfrac{19}{55}\)
\(4A=4+4^2+4^3+4^4+4^5+4^6+4^7\\ 4A-A=4^7-1\\ 3A=4^7-1\\ A=\dfrac{4^7-1}{3}44\)
ta có:\(A=1+4+...+4^6\Rightarrow4A=4+4^2+...+4^7\)
\(\)\(4A=4+4^2+..+4^7\\ \Rightarrow4A-A=\left(4+4^2+..+4^7\right)-\left(1+4+...+4^6\right)\\ \Rightarrow3A=4^7-1\\ \Rightarrow A=\dfrac{4^7-1}{3}\)