Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.\left(25-5+1\right)\)
\(5^3.21=5^3.3.7⋮7\) (đpcm)
b) ta có : \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)\)
\(=7^4.55=7^4.5.11⋮11\) (đpcm)
c) ta có : \(3^{x+2}-2^{x+3}+3^x-2^{x+1}=3^{x+2}+3^x-2^{x+3}-2^{x+1}\)
\(=3^x\left(3^2+1\right)-2^x\left(2^3+2\right)=3^x.\left(9+1\right)-2^x.\left(8+2\right)\)
\(=3^x.10-2^x.10=10\left(3^x-2^x\right)⋮10\) (đpcm)
d) \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}=3^x.\left(3^3+3\right)+2^x.\left(2^3+2^2\right)\)
\(=3^x.\left(27+3\right)+2^x\left(8+4\right)=3^x.30+2^x.12=6.\left(3^x.5+2^x.2\right)⋮6\) (đpcm)
a)Ta có:\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21\)(vì 21 chia hết cho 7)
\(\)\(\RightarrowĐPCM\)
b)Ta có: \(7^6+7^5-7^4⋮11=7^4\left(7^2+7-1\right)=7^4.55⋮11\)
\(\Rightarrowđpcm\)
a) \(2\left(4x-30\right)-3\left(x+5\right)+4\left(x-10\right)=5\left(x+2\right)\)
\(\Leftrightarrow8x-60-3x+15+4x-40=5x+10\)
\(\Leftrightarrow9x-35=5x+10\)
\(\Leftrightarrow9x-5x=10+35\)
\(\Leftrightarrow4x=45\)
\(\Leftrightarrow x=\dfrac{45}{4}=11,25\)
b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\left(6x+1\right)\)
\(\Leftrightarrow\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=4x+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{31}{60}+x=4x+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{31}{60}-\dfrac{2}{3}=4x-x\)
\(\Leftrightarrow3x=\dfrac{1}{60}\)
\(\Leftrightarrow x=\dfrac{1}{180}\)
c) \(\dfrac{7}{3}-\left(2x-\dfrac{1}{3}\right)=\left(-2\dfrac{1}{6}+1\dfrac{1}{2}\right):0,25\)
\(\Leftrightarrow\dfrac{7}{3}-2x+\dfrac{1}{3}=-1\dfrac{2}{3}:\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{8}{3}-2x=\dfrac{-5}{3}.4\)
\(\Leftrightarrow\dfrac{8}{3}-2x=\dfrac{-20}{3}\)
\(\Leftrightarrow2x=\dfrac{8}{3}+\dfrac{20}{3}\)
\(\Leftrightarrow2x=\dfrac{28}{3}\)
\(\Leftrightarrow x=4\dfrac{2}{3}\)
d) \(0,75+\dfrac{5}{9}:x=5\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3}{4}+\dfrac{5}{9}:x=\dfrac{11}{2}\)
\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{11}{2}-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{19}{4}\)
\(\Leftrightarrow x=\dfrac{5}{9}:\dfrac{19}{4}\)
\(\Leftrightarrow x=\dfrac{20}{171}\)
a. \(\dfrac{-39}{7}:x=26\)
x = \(\dfrac{-39}{7}:26\)
x = \(\dfrac{-3}{14}\)
b. \(x:\dfrac{13}{5}=\dfrac{7}{4}\)
x = \(\dfrac{7}{4}.\dfrac{13}{5}\)
x = \(\dfrac{91}{20}\)
c. x = \(\dfrac{-3}{5}-\dfrac{1}{2}\)
x = \(\dfrac{-11}{10}\)
d. \(x-\dfrac{3}{4}=\dfrac{9}{4}\)
x = \(\dfrac{9}{4}+\dfrac{3}{4}\)
x = 3
e. \(\dfrac{7}{8}:x=\dfrac{14}{3}\)
x = \(\dfrac{7}{8}:\dfrac{14}{3}\)
x = \(\dfrac{3}{16}\)
f. \(x:\dfrac{8}{3}=\dfrac{13}{3}\)
x = \(\dfrac{13}{3}.\dfrac{8}{3}\)
x = \(\dfrac{104}{9}\)
g. x = \(\dfrac{4}{10}-\dfrac{2}{5}\)
x = 0
chúc bạn học tốt
a) \(x+\dfrac{1}{3}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}-\dfrac{1}{3}\Leftrightarrow x=\dfrac{5}{12}\) vậy \(x=\dfrac{5}{12}\)
b) \(x-\dfrac{2}{5}=\dfrac{5}{7}\Leftrightarrow x=\dfrac{5}{7}+\dfrac{2}{5}\Leftrightarrow x=\dfrac{39}{35}\) vậy \(x=\dfrac{39}{35}\)
c) \(-x-\dfrac{2}{3}=\dfrac{-6}{7}\Leftrightarrow x=\dfrac{-2}{3}+\dfrac{6}{7}\Leftrightarrow x=\dfrac{4}{21}\) vậy \(x=\dfrac{4}{21}\)
d) \(\dfrac{4}{7}-x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{4}{7}-\dfrac{1}{3}\Leftrightarrow x=\dfrac{5}{21}\) vậy \(x=\dfrac{5}{21}\)
a) x + \(\dfrac{1}{3}\) = \(\dfrac{3}{4}\)
x = \(\dfrac{3}{4}\) - \(\dfrac{1}{3}\)
x = \(\dfrac{5}{12}\)
Vậy x = \(\dfrac{5}{12}\)
b) x - \(\dfrac{2}{5}\) = \(\dfrac{5}{7}\)
x = \(\dfrac{5}{7}\) + \(\dfrac{2}{5}\)
x = \(\dfrac{39}{35}\)
Vậy x = \(\dfrac{39}{35}\)
c) -x - \(\dfrac{2}{3}\) = \(-\dfrac{6}{7}\)
- x = \(-\dfrac{6}{7}\) + \(\dfrac{2}{3}\)
- x = \(-\dfrac{4}{21}\)
⇒ x = \(\dfrac{4}{21}\)
Vậy x = \(\dfrac{4}{21}\)
d) \(\dfrac{4}{7}\) - x = \(\dfrac{1}{3}\)
x = \(\dfrac{4}{7}\) - \(\dfrac{1}{3}\)
x = \(\dfrac{5}{21}\)
Vậy x = \(\dfrac{5}{21}\)
Ta có \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\)
Vì 53.3 là số nguyên nên \(5^3.3.7⋮7\)
Vậy \(5^5-5^4+5^3⋮7\)
c) \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}\)
\(=\left(3^{x+3}+3^{x+1}\right)+\left(2^{x+3}+2^{x+2}\right)\)
\(=3^x\left(3^2+3\right)+2^x\left(2^2+2\right)\)
\(=3^x.12+2^x.6\)
\(=6\left(2.3^x+2^x\right)\)
Vì \(2.3^x+2^x\in Z\)
Nên : \(6\left(2.3^x+2^x\right)⋮6\)
Vậy \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}⋮6\)