Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn tâm \(I\left(3;-2\right)\) bán kính \(R=5\)
Áp dụng định lý Pitago: \(d\left(I;AB\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=3\)
d' song song d nên pt có dạng: \(3x-4y+c=0\) (với \(c\ne-2\))
\(d\left(I;d'\right)=3\Leftrightarrow\frac{\left|3.3-4.\left(-2\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=3\)
\(\Leftrightarrow\left|c+17\right|=15\Rightarrow\left[{}\begin{matrix}c=-2\left(l\right)\\c=-32\end{matrix}\right.\)
Vậy pt d': \(3x-4y-32=0\)
b/ \(\Delta\) là tiếp tuyến (C) \(\Leftrightarrow d\left(I;\Delta\right)=R\)
\(\Leftrightarrow\frac{\left|3.3+4.\left(-2\right)+m\right|}{\sqrt{3^2+4^2}}=5\Leftrightarrow\left|m+1\right|=25\Rightarrow\left[{}\begin{matrix}m=24\\m=-26\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y+24=0\\3x+4y-26=0\end{matrix}\right.\)
c/ Thay tọa độ đường thẳng vào pt (C) được:
\(\left(3+2t\right)^2+\left(-2-t\right)^2-6\left(3+2t\right)+4\left(-2-t\right)-12=0\)
\(\Leftrightarrow5t^2-25=0\Rightarrow t=\pm\sqrt{5}\)
Tọa độ giao điểm: \(\left\{{}\begin{matrix}A\left(3+2\sqrt{5};-2-\sqrt{5}\right)\\B\left(3-2\sqrt{5};-2+\sqrt{5}\right)\end{matrix}\right.\)
Đường tròn (C) tâm \(I\left(2;-2\right)\) bán kính \(R=3\)
\(\overrightarrow{MI}=\left(1;1\right)\Rightarrow IM=\sqrt{2}< R\Rightarrow\) M nằm phía trong đường tròn
Gọi H là hình chiếu vuông góc của I lên d \(\Rightarrow\) H là trung điểm AB
\(AB=2AH=2\sqrt{R^2-IH^2}=2\sqrt{9-IH^2}\)
\(\Rightarrow AB_{min}\) khi \(IH_{max}\)
Trong tam giác vuông IMH, ta luôn có: \(IH\le IM\Rightarrow IH_{max}=IM\) khi H trùng M hay d vuông góc IM
\(\Rightarrow\) Phương trình d (vuông góc IM và đi qua M)
\(1\left(x-1\right)+1\left(y+3\right)=0\Leftrightarrow x+y+2=0\)
Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)
\(\overrightarrow{IM}=\left(3;-5\right)\Rightarrow IM=\sqrt{34}>R\)
\(\Rightarrow\) M nằm ngoài đường tròn
\(\Rightarrow\) Không tồn tại đường thẳng thỏa mãn yêu cầu (bạn xem lại đề, chỉ tìm được đường thẳng d khi điểm M nằm phía trong đường tròn)
Câu 1:
Đường tròn (C) tâm \(I\left(1;2\right)\) bán kính \(R=2\)
\(\overrightarrow{IM}=\left(2;2\right)=2\left(1;1\right)\)
Do AB luôn vuông góc AM nên đường thẳng AB nhận (1;1) là 1 vtpt
Phương trình AB có dạng: \(x+y+c=0\)
Theo công thức diện tích tam giác:
\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2sin\widehat{AIB}\le\frac{1}{2}R^2\)
\(\Rightarrow S_{max}=\frac{1}{2}R^2\) khi \(\widehat{AIB}=90^0\)
\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow\frac{\left|1+2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+3\right|=2\Rightarrow\left[{}\begin{matrix}c=-1\\c=-5\end{matrix}\right.\)
Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}x+y-1=0\\x+y-5=0\end{matrix}\right.\)
TH1: \(x+y-1=0\Rightarrow y=1-x\)
Thay vào pt đường tròn: \(x^2+\left(1-x\right)^2-2x-4\left(1-x\right)+1=0\)
Giải ra tọa độ A hoặc B (1 cái là đủ) rồi tính được AM
TH2: tương tự.
Bạn tự làm nốt phần còn lại nhé
Đây là đề bài 1 chính thức nha bạn!
Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4)
a) Tìm tọa độ tâm I và tính bán kính R của (C1).
b) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của\(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\)
c) Viết phương trình tiếp tuyến d2 với đường tròn (C1) biết d2 song song với d: \(4x+3y+2020=0\)
d) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\)lớn nhất.
Tâm đường tròn \(I\left(1;1\right)\) bán kính \(R=5\)
\(d\left(I;\Delta\right)=\frac{\left|3-4-19\right|}{\sqrt{3^2+4^2}}=4\)
\(\Rightarrow AB=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{5^2-4^2}=6\)