Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) C=\(\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)
=13+.....+3^11 chia het cho 13
nen C=1+3+...+3^11 chia het cho 13
a)Ta có : \(C=1+3+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(1+3^3+...+3^9\right)\)
\(=13\left(1+3^3+...+3^9\right)⋮13\)
b)\(C=1+3+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^4+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(1+3^4+3^8\right)\)
\(=40.\left(1+3^4+3^8\right)⋮40\)
a)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=1\cdot\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=1\cdot13+...+3^9\cdot13\)
\(=13\cdot\left(1+...+3^9\right)⋮13\)
b)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=1\cdot40+...+3^8\cdot40\)
\(=40\cdot\left(1+...+3^8\right)⋮40\)
c)\(S=1+3+...+3^{11}\)
\(3S=3\left(1+3+...+3^{11}\right)\)
\(3S=3+3^2+...+3^{12}\)
\(3S-S=\left(3+3^2+...+3^{12}\right)-\left(1+3+...+3^{11}\right)\)
\(2S=3^{12}-1\)
\(S=\frac{3^{12}-1}{2}\)
Ta có :
\(C+3^{101}=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+.....+3^{96}\left(1+3+3^2\right)+3^{99}\left(1+3+3^2\right)\)
\(C+3^{101}=13+3^3.13+.....+3^{96}.13+3^{99}.13\)
=> C+3101 chia hết cho 13
Mặt khác 3101 không chia hết cho 13
=> C không chia hết cho 13
Ta có :
\(C=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+....+7^{27}\left(1+3+3^2\right)+7^{30}\)
\(C=57+7^3.57+....+7^{27}.57+7^{30}\)
Mà 7^30 không chia hết cho 57
=> C không chia hết cho 57
a) x + 6 ⋮ n + 2
=> ( n + 2 ) + 4 ⋮ n + 2
Mà n + 2 ⋮ n + 2 ∀ n
=> 4 ⋮ n + 2 => n + 2 ∈ { 1 ; 2 ; 4 }
=> n ∈ { 0 ; 2 } ( do n ∈ N )
2. A = 3 + 32 + 33 +...+ 3100
=> 3A = 32 + 33 +...+ 3101
=> 3A - A = 3101 -3
=>2A = 3101 - 3
=>2A + 3 =3101 - 3 + 3=3101
Vậy 2A+3 là 1 lũy thừa của 3
1.
a) 2711 và 818
2711 = (33)11 = 333
818 = (34)8 = 332
\(\Rightarrow\) 2711 > 818
\(C=1+3+3^2+...+3^{11}\)
\(C=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(C=13+3^3.13+...+3^9.13\)
\(\Rightarrow C⋮13\)