Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
a, \(A=\frac{x-1}{x+1}=\frac{x+1-1-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để \(A\in z\) thì \(x+1\inƯ\left(2\right)=\left(-2;-1:1;2\right)\)
\(x+1=-2\Rightarrow x=-3\)
\(x+1=-1\Rightarrow x=-2\)
\(x+1=1\Rightarrow x=0\)
\(x+1=2\Rightarrow x=1\)
Vậy \(x=\left(-3;-2;0;1\right)\)thì \(A\in z\)
b, \(A=\frac{x+1}{x-2}=1+\frac{3}{x-2}\)
Để \(A\in z\)thì \(x-2\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
\(x-2=-3\Rightarrow x=-1\)
\(x-2=-1\Rightarrow x=1\)
\(x-2=1\Rightarrow x=3\)
\(x-2=3\Rightarrow x=5\)
Vậy \(x=\left(-1;1;3;5\right)\)thì \(A\in z\)
c, \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)\(ĐK:\)\(x\ge0;x\ne9\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(A\in z\)thì \(\sqrt{x}-3\inƯ\left(4\right)=\left(-4;-2;-1;1;2;4\right)\)
\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-1VN\)
\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=5\Rightarrow x=25\)
\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=7\Rightarrow x=49\)
Vậy \(x=\left(1;4;16;25;49\right)\)thì \(A\in z\)
d, \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\) \(ĐK:\)\(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để \(A\in z\) thì \(\sqrt{x}-1\inƯ\left(2\right)=\left(-2;-1;1;2\right)\)
\(\sqrt{x}-1=-2\Rightarrow\sqrt{x}=-1VN\)
\(\sqrt{x}-1=-1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}-1=1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\sqrt{x}-1=2\Rightarrow\sqrt{x}=3\Rightarrow x=9\)
Vậy \(x=\left(0,4,9\right)\)thì \(A\in z\)
\(a,A=\frac{x-1}{x+1}\)
Để \(A\in Z\)
\(\Rightarrow\frac{x-1}{x+1}\in Z\)
\(\Rightarrow\frac{x+1-2}{x+1}\in Z\)
\(\Rightarrow1-\frac{2}{x+1}\in Z\)
\(\Rightarrow\frac{2}{x+1}\in Z\)
\(\Rightarrow x+1\in U_{\left(2\right)}\)
\(\Rightarrow x+1=\left\{-2,-1,1,2\right\}\)
\(\Rightarrow x=\left\{-3,-2,0,1\right\}\)
\(ĐKXĐ:x\ne\pm1\)
a) \(P=\frac{2x+3}{x+1}-\frac{x+2}{x-1}+\frac{3x+5}{x^2-1}\)
\(\Leftrightarrow P=\frac{\left(2x+3\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+3x+5}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow P=\frac{2x^2+x-3-x^2-3x-2+3x+5}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow P=\frac{x^2+x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow P=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow P=\frac{x}{x-1}\)
b) Để \(P\inℤ\)
\(\Leftrightarrow x⋮x-1\)
\(\Leftrightarrow x-1+1⋮x-1\)
\(\Leftrightarrow1⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{0;2\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;2\right\}\)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái