K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi x=3 thì \(A=\dfrac{3+2}{3-1}=\dfrac{5}{2}\)

b: \(B=\dfrac{x-1}{x}+\dfrac{2x+1}{x\left(x+1\right)}=\dfrac{x^2-1+2x+1}{x\left(x+1\right)}=\dfrac{x+2}{x+1}\)

\(P=A:B=\dfrac{x+2}{x-1}\cdot\dfrac{x+1}{x+2}=\dfrac{x+1}{x-1}\)

3: Để P>1/3 thì \(P-\dfrac{1}{3}>0\)

=>\(\Leftrightarrow3\left(x+1\right)-x+1>0\)

=>3x+3-x+1>0

=>2x+4>0

hay x>-2

21 tháng 8 2020

xxwser4

12 tháng 1 2019

a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)

\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)

\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{2x+1-3x-1+x^2}{3x}\)

\(A=\frac{x^2-x}{3x}\)

\(A=\frac{x\left(x-1\right)}{3x}\)

\(A=\frac{x-1}{3}\)

b) Thay x = 4 ta có :

\(A=\frac{4-1}{3}=\frac{3}{3}=1\)

c) Để A thuộc Z thì \(x-1⋮3\)

\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)

\(\Rightarrow x\in\left\{1;4;7;...\right\}\)

Vậy.....

27 tháng 2 2020

Cho Bt 

a,Tìm điều kiện xác định và rút gọn bt A

b,Tính giá trị bt A tại x=4

c,tìm x thuộc Z để a thuộc Z

11 tháng 7 2018

ĐKXĐ: \(x\ne\pm1;-2\)

\(P=\left(\frac{x+1}{x-1}+\frac{2}{x^2-1}-\frac{x}{x+1}\right).\frac{x-1}{x+2}\)

\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)

\(=\left(\frac{x^2+2x+1}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x^2-x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)

\(=\left(\frac{x^2+2x+1+2-x^2+x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)

\(=\frac{3x+3}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3}{x+2}\)

c. \(x^2-3x=0\Leftrightarrow x.\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Nếu x=0 thì: \(P=\frac{3}{x+2}=\frac{3}{0+2}=\frac{3}{2}\)

Nếu x=3 thì: \(P=\frac{3}{x+2}=\frac{3}{3+2}=\frac{3}{5}\)

d. Ta có: \(P=\frac{3}{x+2}\inℤ\)

Vì \(x\inℤ\Rightarrow x+2\inℤ\Rightarrow x+2\inƯ\left\{3\right\}\Rightarrow x+2\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-3;-1;1;-5\right\}\)

Kết hợp ĐKXĐ \(\Rightarrow x\in\left\{-3;-5\right\}\)

a: ĐKXĐ: x<>0; x<>1

\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |2x+1|=3

=>x=1(loại); x=-2(nhận)

Khi x=-2 thì P=4/-3=-4/3

c: P=-1/2

=>x^2/x-1=-1/2

=>2x^2=-x+1

=>2x^2+x-1=0

=>2x^2+2x-x-1=0

=>(x+1)(2x-1)=0

=>x=1/2; x=-1