Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Để B là phân số <=> n - 12 \(\ne\)0 => n \(\ne\)12
b) Để B có giá trị là số nguyên <=> 5 \(⋮\)n - 12
<=> n - 12 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng:
n - 12 | 1 | -1 | 5 | -5 |
n | 13 | 11 | 17 | 7 |
Vậy ...
giải:a)để \(\frac{5}{n-12}\)là số nguyên nên suy ra:5 chia hết cho n-12 suy ra:n-12 thuộc vào Ư(5). MÀ Ư 5 =1,-1,5,-5 N-12=1.SUY RA:N=1+12=13;N-12=-1 .SUY RA:N=-1+12=11;N-12=5.SUY RA:N=5+12=17:N-12=-5.SUY RA=-5+12=7 VẬY N=13,11,17,7 #NHỚ K CHO MK NHA
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
A=2n+22n−4=n+1n−2=1+3n−2A=2n+22n−4=n+1n−2=1+3n−2
Để A là phân số thì (n−2)⋮/3(n−2)⋮̸3 ⇔(n−2)∉U(3)⇔(n−2)∉U(3)
⇔(n−2)∉{−3;−1;1;3}⇔n∉{−1;1;3;5}⇔(n−2)∉{−3;−1;1;3}⇔n∉{−1;1;3;5}
Vậy với n=Zn=Z và n≠{−1;1;3;5}n≠{−1;1;3;5} thì A là phân số
Với n∉{−1;1;3;5}n∉{−1;1;3;5} thì A là số nguyên.
\(a)\) Để A là phân số thì \(n-3\ne0\)\(\Rightarrow\)\(n\ne3\)
\(b)\) Ta có :
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để A có giá trị nguyên thì \(4⋮\left(n-3\right)\)\(\Rightarrow\)\(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra :
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\) thì A có giá trị nguyên
Chúc bạn học tốt ~
a/Để A là 1 phân số nen n-3 khac 0
Để n-3 khác 0 thì n khác 3
b/A= n+1/n-3 = n-3+4/n-3 = 1+ 4/n-3
Để A có giá trị nguyên thì n-3 thuộc U(4)={-1;-2;-4;1;2;4}
ta có bảng
n-3 1 2 4 -1 -2 -4
n 4 5 7 2 1 -1
Vậy với n thuộc {4;5;7;2;1;-1}thì A nguyên
a) \(n\in Q\) thì B là phân số.
b) giá trị n nguyên để B có giá trị nguyên <=>
n-12 là ước nguyên của 5 \(\left\{-5;-1;1;5\right\}\)
=> \(n\in\left\{7;11;13;17\right\}\)
a) Để B là phân số thì 5, n-12 \(\in\) Z và n-12 \(\ne\) 0
\(\Rightarrow n\ne\)12
Vậy: n\(\ne\)12; n\(\in\)Z
b) Để B là số nguyên thì: 5 \(⋮\) n-12
\(\Rightarrow n-12\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{13;11;17;7\right\}\)
Vậy:...............