K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

a) Cách 1: Từ điều kiện \(a,b,c,d\) khác nhau và \(a.d=b.c\)

ta suy ra \(a,b,c,d\ne0\)\(\frac{a}{b}=\frac{c}{d}\left(1\right)\).

Cộng vào hai vế của (1) cùng số 1 ta được:

\(\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)

Cách 2: Theo tính chất của tỉ lệ thức, từ (1) suy ra:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{c+d}{d}=\frac{a+b}{b}.\)

b) Giải tương tự câu a) ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{c}=\frac{c-d}{d}.\)

Hoặc ta có theo tính chất của tỉ lệ thức

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)

4 tháng 11 2016

theo bài ra , ta có :

ad = cd

=>\(\frac{a}{b}=\frac{c}{d}\) ( 1 )

=> \(\frac{a}{b}+1=\frac{c}{d}+1\)

=>\(\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)

b/ Từ 1 ở phần a ta có:

\(\frac{a}{b}-1=\frac{c}{d}-1\)

=> \(\frac{a-b}{b}=\frac{c-d}{d}\) (đpcm)

12 tháng 12 2016

Các bn lm ơn lm nhanh hộ tui dc ko? Tui đag cần rất gấp đó các bn ơi!

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Ta có : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\left(đpcm\right)\)

10 tháng 11 2018

Giải :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{bk-b}{bk+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)(1)

                       \(\frac{dk-d}{dk+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}=\frac{k-1}{k+1}\)(2)

Từ (1) và (2), suy ra : \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

10 tháng 11 2018

Bn chỉ cần áp dụng t/c dãy tỉ số bằng nhau cho tổng và hiệu là ra nhé

8 tháng 7 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

8 tháng 7 2017

Gọi số hs bốn khối 6,7,8,9 lần lượt là a,b,c,d

Vì a,b,c,d tỉ lệ với 9;8;7;6 nên \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)

=> a = 35.9 = 315 ; b = 35.8 = 280 ; c = 35.7 = 245 ; d = 210

Vậy số học sinh mỗi khối lần lượt là 315,280,245 và 210

11 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)

Vậy.......

27 tháng 12 2016

Ta có : a/b=c/d<=>a/c=b/d=a+b/c+d=a-b/c-d

=>a+b/a-b=c+d=c-d

27 tháng 12 2016

Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)

Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\) 

\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)

Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)

11 tháng 11 2018

 \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Ta có : \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\frac{\left(a+b\right)^3}{\left(c+d\right)^3}=\left(\frac{a+b}{c+d}\right)^3\)(1)

Ta lại có : \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{b}{d}\right)^3=\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)