Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ c(b+d)=2bd=>bc+cd=2bd
Ta lại có a+c =2b
Lấy vế chia vế được :\(\frac{bc+cd}{a+c}=\frac{2bd}{2b}=\)\(d\)
=>bc+cd=ad+cd=>bc=ad=>\(\frac{a}{b}=\frac{c}{d}\)
+ , \(\frac{a}{b}=\frac{c}{d}\)= \(\frac{a+c}{b+d}\)=> \(\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)= \(\frac{a^8}{b^8}\) (1)
+ \(\frac{a}{b}=\frac{c}{d}\)=> \(\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8\)<=>\(\frac{a^8}{b^8}=\frac{c^8}{d^8}\)=\(\frac{a^8+c^8}{b^8+d^8}\) (2)
Từ (1) và (2) ta suy ra : \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\) ( đpcm)
Từ \(c\left(b+d\right)=2bd\Rightarrow b+d=\frac{2ab}{c}\)
Viết : \(\frac{a+c}{b+d}=\frac{2ab}{2bd}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Đến đây bn chỉ cần biến đổi để có điều phải chứng minh
hc tốt
Vì \(a+c=2b;dc+bc=2bd\Rightarrow\frac{dc+bc}{a+c}=\frac{2bd}{2b}=d\)
\(\Rightarrow bc+dc=\left(a+c\right)d=ad+dc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^8=\frac{a^8+b^8}{c^8+d^8}\)
Ta có:
\(c.\left(b+d\right)=2bd\)
\(\Rightarrow bc+cd=2bd\)
Lại có: \(a+c=2b\)
Lấy vế chia vế được: \(\dfrac{bc+cd}{a+c}=\dfrac{2bd}{2b}=d\)
\(\Rightarrow bc+cd=ad+cd\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
* \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\left(\dfrac{a+c}{b+d}\right)^8=\left(\dfrac{a}{b}\right)^8=\dfrac{a^8}{b^8}\left(1\right)\)
* \(\dfrac{a}{b}=\dfrac{c}{d}=\left(\dfrac{a}{b}\right)^8=\left(\dfrac{c}{d}\right)^8\)
\(\Rightarrow\dfrac{a^8}{b^8}=\dfrac{c^8}{d^8}=\dfrac{a^8+c^8}{b^8+d^8}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\left(\dfrac{a+c}{b+d}\right)^8=\dfrac{a^8+c^8}{b^8+d^8}\left(đpcm\right)\)
2b = a+ c(1)
2bd = bc + bd
<=> ( a+c )d= bc+ cd
<=> ad +cd= bc+ cd
<=> ad = bc
<=> a/b = c/d (đpcm)
- viết lại cái đề
* Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)
* Vậy \(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\left(1\right)\)
\(\frac{b}{3c}=\frac{1}{3}\Rightarrow3b=3c\Rightarrow b=c\left(2\right)\)
\(\frac{c}{3d}=\frac{1}{3}\Rightarrow3c=3d\Rightarrow c=d\left(3\right)\)
\(\frac{d}{3a}=\frac{1}{3}\Rightarrow3d=3a\Rightarrow d=a\left(4\right)\)
từ (1),(2),(3),(4) ta có:
a=b,b=c,c=d,d=a
=> a=b=c=d
Bạn ơi bạn vô câu hỏi tương tự xem nhé
Học tốt
Tham khảo nhé!
>>https://olm.vn/hoi-dap/detail/80507618602.html