Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045.\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)
\(=\left[\left(x^2-2x\right)\left(y^2+6y\right)+3\left(y^2+6y\right)\right]+12\left(x^2-2x+3\right)+2009.\)
\(=\left(x^2-2x+3\right)\left(y^2+6x\right)+12\left(x^2-2x+3\right)+2009\)
\(=\left(x^2-2x+3\right)\left(y^2+6x+12\right)+2009\)
\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow\left(x-1\right)^2+2\ge2\)
\(\left(y+3\right)^2\ge0\forall y\Leftrightarrow\left(y+3\right)^2+3\ge3\)
Suy ra \(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\ge2.3+2009=2015\)
Vậy GTNN của B=2015 khi x=1, y=-3.
Ta có :
\(B=x\left(x-2\right)y\left(y+6\right)+12x^2-24x+3y^2+18y+36\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y+12\right)+12\)
\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)+12\)
\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+12\)
\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+12\ge2.3+12=18\)
\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2047\)
\(=xy\left(x-2\right)\left(y+6\right)+12\left(x^2-2x\right)+3y\left(y+6\right)+2047\)
\(=y\left(y+6\right)\left(x^2-2x\right)+12\left(x^2-2x+3\right)+3y\left(y+6\right)+2011\)
\(=y\left(y+6\right)\left(x^2-2x+3\right)+12\left(x^2-2x+3\right)+2011\)
\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2011\)
\(=\left[\left(x-1\right)^2+2\right].\left[\left(y+3\right)^2+3\right]+2011\ge2.3+2011=2017\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
Vậy GTNN của A là 2017 khi \(x=1,y=-3\)
Bài 2:
\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)
\(A=12x\left(x-2\right)+xy\left(x-2\right)\left(y+6\right)+3y\left(y+6\right)+36\)
Đặt \(x\left(x-2\right)=a;y\left(y+6\right)=b\)
\(A=12a+ab+3b+36\)
\(A=a\left(b+12\right)+3\left(b+12\right)\)
\(A=\left(b+12\right)\left(a+3\right)\)
\(A=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)
\(A=\left[\left(x-1\right)^2+2\right]\left[\left(y+9\right)^2+3\right]>0\forall x;y\)
Bài 3:
\(3xy+x+15y-164=0\)
\(\Leftrightarrow x\left(3y+1\right)+5\left(3y+1\right)-169=0\)
\(\Leftrightarrow\left(3y+1\right)\left(x+5\right)=169\)
Tới đây xét ước là xong.
p/s: Còn 2 bài trưa về giải nốt em nhé.
Bài 4:*Tìm Max
Xét hiệu: \(5x^2+8xy+5y^2-A=4x^2+8xy+4y^2=4\left(x+y\right)^2\ge0\)
Từ đó \(A\le5x^2+8xy+5y^2=72\)
Đẳng thức xảy ra khi x =-y và \(5x^2+8xy+5y^2=72\)
Thay cái phía trược vào thu được (x;y) =(6;-6) và (-6 ; 6)
Vậy Max A là 72.
*Tìm min:
Xét hiệu: \(9A-\left(5x^2+8xy+5y^2\right)=4x^2-8xy+4y^2=4\left(x-y\right)^2\)
Do đó \(9A\ge5x^2+8xy+5y^2=72\Rightarrow A\ge8\)
Đẳng thức xảy ra khi x = y và \(5x^2+8xy+5y^2=72\)
Thay cái phía trược vào thu được (x;y) = (2;2) ; (-2;-2)
Vậy...
P/s: Check lại cái "đẳng thức xảy ra khi..." nhé, có thể nhầm lẫn đấy.
\(P = xy(x - 2)(y+6) + 12x^2 – 24x + 3y^2 + 18y + 36 \)
\(= x^2.y^2 + 6x^2y - 2xy^2 - 12xy – 24x + 3y^2 + 18y + 36 \)
\(= (18y + 36) + (6x2y + 12x^2) – (12xy + 24x) + (x^2y - 2xy^2 + 3y^2) \)
\(= 6(y + 2)(x^2 – 2x + 3) + y^2(x^2 – 2x + 3) \)
\(= (x^2 – 2x + 3)(y^2 + 6y +12) = [(x -1)^2 + 2][(y + 3)^2 +3] > 0 \)
Vậy P > 0 với mọi x, y thuộc R.
bạn ghi rõ hơn đc k ạ. mình k hiểu