K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

\(P = xy(x - 2)(y+6) + 12x^2 – 24x + 3y^2 + 18y + 36 \)

\(= x^2.y^2 + 6x^2y - 2xy^2 - 12xy – 24x + 3y^2 + 18y + 36 \)

\(= (18y + 36) + (6x2y + 12x^2) – (12xy + 24x) + (x^2y - 2xy^2 + 3y^2) \)

\(= 6(y + 2)(x^2 – 2x + 3) + y^2(x^2 – 2x + 3) \)

\(= (x^2 – 2x + 3)(y^2 + 6y +12) = [(x -1)^2 + 2][(y + 3)^2 +3] > 0 \)

Vậy P > 0 với mọi x, y thuộc  R.

1 tháng 8 2016

bạn ghi rõ hơn đc k ạ. mình k hiểu 

 

13 tháng 6 2019

\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045.\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)

\(=\left[\left(x^2-2x\right)\left(y^2+6y\right)+3\left(y^2+6y\right)\right]+12\left(x^2-2x+3\right)+2009.\)

\(=\left(x^2-2x+3\right)\left(y^2+6x\right)+12\left(x^2-2x+3\right)+2009\)

\(=\left(x^2-2x+3\right)\left(y^2+6x+12\right)+2009\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow\left(x-1\right)^2+2\ge2\)

\(\left(y+3\right)^2\ge0\forall y\Leftrightarrow\left(y+3\right)^2+3\ge3\)

Suy ra \(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\ge2.3+2009=2015\)

Vậy GTNN của B=2015 khi x=1, y=-3.

16 tháng 2 2024

sai từ dấu = thứ 3 rồi bạn

17 tháng 1 2018

Ta có : 

\(B=x\left(x-2\right)y\left(y+6\right)+12x^2-24x+3y^2+18y+36\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y+12\right)+12\)

\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)+12\)

\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+12\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+12\ge2.3+12=18\)

3 tháng 9 2018

\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2047\)

   \(=xy\left(x-2\right)\left(y+6\right)+12\left(x^2-2x\right)+3y\left(y+6\right)+2047\)

   \(=y\left(y+6\right)\left(x^2-2x\right)+12\left(x^2-2x+3\right)+3y\left(y+6\right)+2011\)

   \(=y\left(y+6\right)\left(x^2-2x+3\right)+12\left(x^2-2x+3\right)+2011\)

   \(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2011\)

   \(=\left[\left(x-1\right)^2+2\right].\left[\left(y+3\right)^2+3\right]+2011\ge2.3+2011=2017\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

Vậy GTNN của A là 2017 khi \(x=1,y=-3\)

20 tháng 9 2019

Bài 2:

\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)

\(A=12x\left(x-2\right)+xy\left(x-2\right)\left(y+6\right)+3y\left(y+6\right)+36\)

Đặt \(x\left(x-2\right)=a;y\left(y+6\right)=b\)

\(A=12a+ab+3b+36\)

\(A=a\left(b+12\right)+3\left(b+12\right)\)

\(A=\left(b+12\right)\left(a+3\right)\)

\(A=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)

\(A=\left[\left(x-1\right)^2+2\right]\left[\left(y+9\right)^2+3\right]>0\forall x;y\)

Bài 3:

\(3xy+x+15y-164=0\)

\(\Leftrightarrow x\left(3y+1\right)+5\left(3y+1\right)-169=0\)

\(\Leftrightarrow\left(3y+1\right)\left(x+5\right)=169\)

Tới đây xét ước là xong.

p/s: Còn 2 bài trưa về giải nốt em nhé.

20 tháng 9 2019

Bài 4:*Tìm Max

Xét hiệu: \(5x^2+8xy+5y^2-A=4x^2+8xy+4y^2=4\left(x+y\right)^2\ge0\)

Từ đó \(A\le5x^2+8xy+5y^2=72\)

Đẳng thức xảy ra khi x =-y và \(5x^2+8xy+5y^2=72\)

Thay cái phía trược vào thu được (x;y) =(6;-6) và (-6 ; 6)

Vậy Max A là 72.

*Tìm min:

Xét hiệu: \(9A-\left(5x^2+8xy+5y^2\right)=4x^2-8xy+4y^2=4\left(x-y\right)^2\)

Do đó \(9A\ge5x^2+8xy+5y^2=72\Rightarrow A\ge8\)

Đẳng thức xảy ra khi x = y và \(5x^2+8xy+5y^2=72\)

Thay cái phía trược vào thu được (x;y) = (2;2) ; (-2;-2)

Vậy...

P/s: Check lại cái "đẳng thức xảy ra khi..." nhé, có thể nhầm lẫn đấy.