Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)
\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)
\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)
\(A=\sqrt{7}-\sqrt{28}\)
\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)
Vậy \(A=-\sqrt{7}\)
b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)
\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)
\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)
\(B=a-b\)
Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)
_Minh ngụy_
Bài 2 :
a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)
Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))
Vậy \(x>1\)thì \(B>0\)
_Minh ngụy_
\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để A > 0
=> \(\frac{\sqrt{x}-1}{\sqrt{x}}>0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>0\end{cases}}\Leftrightarrow x>1\)
2. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}< 0\end{cases}}\)( dễ thấy trường hợp này không xảy ra :> )
Vậy với x > 1 thì A > 0
1: Rút gọn biểu thức
a) Ta có: \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=5\cdot\frac{1}{\sqrt{5}}+\frac{1}{3}\cdot3\sqrt{5}+\left|2-\sqrt{5}\right|\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-2\)(Vì \(2< \sqrt{5}\))
\(=3\sqrt{5}-2\)
b) Ta có: \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(=\frac{\left(5+\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}+\frac{\left(5-\sqrt{5}\right)^2}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}\)
\(=\frac{30+10\sqrt{5}+30-10\sqrt{5}}{25-5}\)
\(=\frac{60}{20}=3\)
2:
Sửa đề: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Ta có: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4;\frac{14\pm6\sqrt{5}}{4}\right\}\end{matrix}\right.\)
Để \(A>\frac{1}{6}\) thì \(A-\frac{1}{6}>0\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)
\(\Leftrightarrow\frac{2\sqrt{x}-4}{6\sqrt{x}}-\frac{\sqrt{x}}{6\sqrt{x}}>0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{6\sqrt{x}}>0\)
mà \(6\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}-4>0\)
\(\Leftrightarrow\sqrt{x}>4\)
hay x>16
Kết hợp ĐKXĐ, ta được: x>16
Vậy: Để \(A>\frac{1}{6}\)thì x>16
\(2\sqrt{3a}-\sqrt{75a}+a\sqrt{\frac{6}{5}.\frac{5}{2a}}-\frac{2}{5}\sqrt{300a^3}\)
\(=2\sqrt{3a}-5\sqrt{3a}+a\sqrt{\frac{3}{2}}-\frac{2}{5}.10.a\sqrt{3a}\)
\(=-3\sqrt{3a}+\sqrt{\frac{3}{a}.a^2-4\sqrt{3a}}\)
\(=-3\sqrt{3a}+\sqrt{3a}-4a\sqrt{3a}\)
\(=-2\sqrt{3a}-4a\sqrt{3a}\)
\(=-2\sqrt{3a}\left(1+2a\right)\)
a) ĐKXĐ : \(a>0;a\ne1\)
\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\)
\(Q=\left(\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\right)\)
\(Q=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{3}\)
\(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}\)
b) \(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}>2\Rightarrow\sqrt{a}-6\sqrt{a}+2>0\Rightarrow-5\sqrt{a}>-2\Rightarrow0< \sqrt{a}< \frac{2}{5}\)
\(\Rightarrow0< a< \frac{4}{25}\)
Với x > 0
\(P=\frac{\sqrt{a}+5}{a+5\sqrt{a}}=\frac{\sqrt{a}+5}{\sqrt{a}\left(\sqrt{a}+5\right)}=\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a}\)