K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

`a)M=(x^4+2)/(x^6+1)+(x^2-1)/(x^4-x^2+1)-(x^2+3)/(x^4+4x^2+3)`

`=(x^4+2)/(x^6+1)+(x^2-1)/(x^4-x^2+1)-(x^2+3)/((x^2+1)(x^2+3))`

`=(x^4+2)/(x^6+1)+((x^2-1)(x^2+1))/(x^6+1)-1/(x^2+1)`

`=(x^4+2+x^4-1-x^4+x^2-1)/(x^2+1)`

`=(x^4+x^2)/(x^2+1)`

`=(x^2(x^2+1))/(x^2+1)`

`=x^2`

`b)` tìm gtnn chứ?

`M=x^2>=0`

Dấu '=" `<=>x=0`

24 tháng 5 2022

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài

19 tháng 8 2017

a) điều kiện \(x\ne\pm2\)

\(A=\left(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x^2}\right):\dfrac{1}{3x-2x^2-6}\)

\(A=\left(\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x-6}{x^2-4}\right):\dfrac{1}{3x-2x^2-6}\)

\(A=\left(\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x-6}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{1}{3x-2x^2-6}\)

\(A=\dfrac{4\left(x-2\right)+2\left(x+2\right)-\left(5x-6\right)}{\left(x+2\right)\left(x-2\right)}:\dfrac{1}{3x-2x^2-6}\)

\(A=\dfrac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}:\dfrac{1}{3x-2x^2-6}\)

\(A=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)}:\dfrac{1}{3x-2x^2-6}\)

\(A=\dfrac{1}{x-2}.\dfrac{3x-2x^2-6}{1}=\dfrac{3x-2x^2-6}{x-2}\)

b) ta có : \(3x-2x^2-6=-2x^2+3x-6=-\left(2x^2-3x+6\right)\)

\(=\left(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\dfrac{3}{2\sqrt{2}}+\left(\dfrac{3}{2\sqrt{2}}\right)^2\right)+\dfrac{39}{8}\)

\(=\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\ge\dfrac{39}{8}>0\)

\(\Rightarrow A\le0\) \(\Leftrightarrow x-2\le0\) (mà đk : \(x\ne2\) \(\Rightarrow x-2\ne0\))

vậy \(A\le0\Leftrightarrow A< 0\) \(\Leftrightarrow x-2< 0\Leftrightarrow x< 2\) vậy \(x< 2\)

5 tháng 8 2018

Các bạn giải chi tiết hộ mình với!mình cảm ơn nhìu.

a: ĐKXĐ: \(x\notin\left\{0;-4;-2;2\right\}\)

b: \(B=\dfrac{1}{x+2}-\dfrac{x^2-4}{x+4}\cdot\left(\dfrac{4x^2+x^2+4x+4}{4x^2\left(x+2\right)^2}\right)\)

\(=\dfrac{1}{x+2}-\dfrac{\left(x-2\right)}{x+4}\cdot\dfrac{5x^2+4x+4}{4x^2\left(x+2\right)}\)

\(=\dfrac{4x^3+16x^2-\left(x-2\right)\left(5x^2+4x+4\right)}{4x^2\left(x+4\right)\left(x+2\right)}\)

\(=\dfrac{4x^3+16x^2-5x^3-4x^2-4x+10x^2+8x+8}{4x^2\left(x+4\right)\left(x+2\right)}\)

\(=\dfrac{-x^3+22x^2+4x+8}{4x^2\left(x+4\right)\left(x+2\right)}\)

a: \(=\dfrac{x^4+15x+7}{x^4+15x+7}\cdot\dfrac{x}{14x^2+1}\cdot\dfrac{4x^3+4}{2x^3+2}=\dfrac{2x}{14x^2+1}\)

b: \(=\dfrac{x^7+3x^2+2}{x^7+3x^2+2}\cdot\dfrac{x^2+x+1}{x^3-1}\cdot\dfrac{3x}{x+1}\)

\(=\dfrac{1}{x-1}\cdot\dfrac{3x}{x+1}=\dfrac{3x}{x^2-1}\)

23 tháng 12 2018
https://i.imgur.com/P1IwAEA.jpg
19 tháng 11 2017

\(Câu\text{ }1:\)

\(\text{ a) }A=\dfrac{4}{x^2+2}+\dfrac{3}{2-x^2}-\dfrac{12}{4-x^4}\\ A=\dfrac{4\left(2-x^2\right)}{\left(x^2+2\right)\left(2-x^2\right)}+\dfrac{3\left(2+x^2\right)}{\left(2-x^2\right)\left(2+x^2\right)}-\dfrac{12}{\left(2+x^2\right)\left(2-x^2\right)}\\ A=\dfrac{4\left(2-x^2\right)+3\left(2+x^2\right)-12}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{8-4x^2+6+3x^2-12}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{-x^2-2}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{-\left(x^2+2\right)}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{-1}{2-x^2}\)

\(\text{b) }Để\text{ }A=-3\\ thì\Rightarrow\dfrac{-1}{2-x^2}=-3\\ \Leftrightarrow2-x^2=3\\ \Leftrightarrow x^2=-1\\ \Leftrightarrow x\text{ }không\text{ }có\text{ }giá\text{ }trị\left(vì\text{ }x^2\ge0\forall x\right)\\ \text{ }Vậy\text{ }để\text{ }A=-3\text{ }thì\text{ }x\text{ }không\text{ }có\text{ }giá\text{ }trị.\)

\(\text{c) }Ta\text{ }có:\text{ }A=\dfrac{-1}{2-x^2}\\ A=\dfrac{1}{x^2-2}\\ x^2\ge0\forall x\\ \Rightarrow x^2-2\ge-2\forall x\\ \Rightarrow A=\dfrac{1}{x^2-2}\le-\dfrac{1}{2}\\ Dấu\text{ }"="\text{ }xảy\text{ }khi:\\ x^2=0\\ \Leftrightarrow x=0\\\text{ }Vậy\text{ }A_{\left(Max\right)}=-\dfrac{1}{2}\text{ }khi\text{ }x=0\)

19 tháng 11 2017

\(Câu\text{ }2:\)

\(\text{a) }B=\dfrac{1}{x}+\dfrac{1}{x+5}+\dfrac{x-5}{x\left(x+5\right)}\\ B=\dfrac{x+5}{x\left(x+5\right)}+\dfrac{x}{\left(x+5\right)x}+\dfrac{x-5}{x\left(x+5\right)}\\ B=\dfrac{x+5+x+x-5}{x\left(x+5\right)}\\ B=\dfrac{3x}{x\left(x+5\right)}\\ B=\dfrac{3}{x+5}\left(\text{*}\right)\)

\(\text{b) }Ta\text{ }có:\text{ }\left|x-1\right|=6\\ \Leftrightarrow\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\\ Ta\text{ }lại\text{ }có:\text{ }B=\dfrac{3}{x+5}\\ \RightarrowĐKCĐ:x+5\ne0\\ \Rightarrow x\ne-5\\ \Rightarrow x=7\text{ }thỏa\text{ }mãn\text{ }với\text{ }điều\text{ }kiện\text{ }của\text{ }biến.\\ x=-5\text{ }không\text{ }thỏa\text{ }mãn\text{ }với\text{ }điều\text{ }kiện\text{ }của\text{ }biến.\\ Thay\text{ }x=7\text{ }vào\text{ }\left(\text{*}\right),ta\text{ }được:\text{ }B=\dfrac{3}{7+5}=\dfrac{3}{12}=\dfrac{1}{4}\\ \text{ }Vậy\text{ }với\text{ }x=7\text{ }thì\text{ }B=\dfrac{1}{4}\\ với\text{ }x=-5\text{ }thì\text{ }B\text{ }không\text{ }có\text{ }giá\text{ }trị.\)

\(\text{c) }Ta\text{ }có:B=\dfrac{3}{x+5}\\ \RightarrowĐể\text{ }B\in Z\\ thì\Rightarrow3⋮x+5\\ \Rightarrow x+5\inƯ_{\left(3\right)}\\ Mà\text{ }Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\\ Ta\text{ }lập\text{ }bảng\text{ }xét\text{ }giá\text{ }trị:\)

\(x+5\) \(-3\) \(-1\) \(1\) \(3\)
\(x\) \(-8\) \(-6\) \(-4\) \(-2\)

\(\Rightarrow x\in\left\{-8;-6;-4;-2\right\}\\ Vậy\text{ }để\text{ }B\in Z\\ thì x\in\left\{-8;-6;-4;-2\right\}\)