Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(a>0;a\ne1\)
\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\)
\(Q=\left(\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\right)\)
\(Q=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{3}\)
\(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}\)
b) \(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}>2\Rightarrow\sqrt{a}-6\sqrt{a}+2>0\Rightarrow-5\sqrt{a}>-2\Rightarrow0< \sqrt{a}< \frac{2}{5}\)
\(\Rightarrow0< a< \frac{4}{25}\)
1/
a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)
b/ \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)
\(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)
Vậy x = 9/25 , x = 4
1) a) ĐKXĐ : \(0\le x\ne\frac{1}{9}\)
b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)
a)\(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right)\):\(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a-1}\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a-1}\right)}\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{\left(a-1\right)\left(a-4\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{a-1-a+4}\)
\(=\dfrac{1}{\sqrt{a}}.\dfrac{\sqrt{a}-2}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\) ĐKXĐ: \(x>0\) \(a\ne4\) \(a\ne1\)
b) \(Q>0\)
\(\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)
mà \(3\sqrt{a}>0\) (Kết hợp ĐKXĐ \(a>0\))
\(\Leftrightarrow\sqrt{a}-2>0\)
\(\Leftrightarrow\sqrt{a}>2\)
\(\Leftrightarrow a>4\) (Thỏa mãn ĐKXĐ)
Vậy \(a>4\) thì \(Q>0\)
____♫ Chúc bạn học tốt ♫____
Bài 1:
a) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b) Để Q dương thì \(\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)
mà \(3\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ
nên \(\sqrt{a}-2>0\)
\(\Leftrightarrow\sqrt{a}>2\)
hay a>4
Kết hợp ĐKXĐ,ta được: a>4
Vậy: Để Q dương thì a>4
a) \(P=\dfrac{x-1+4\left(\sqrt{x}+1\right)+1}{x-1}.\dfrac{x-1}{x+2\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}+4}{x+2\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)
b) \(P=\dfrac{\sqrt{x}+2}{\sqrt{x}}=1+\dfrac{2}{\sqrt{x}}\in Z\)
Do \(\sqrt{x}>0\)
\(\Rightarrow\sqrt{x}\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\Rightarrow x\in\left\{1;4\right\}\)
\(a,A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\\ b,A< 0\Leftrightarrow\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\left(1>0\right)\\ \Leftrightarrow x< 1\\ c,A\in Z\Leftrightarrow1⋮\sqrt{x}-1\\ \Leftrightarrow\sqrt{x}-1\inƯ\left(1\right)\left\{-1;1\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\\ \Leftrightarrow x\in\left\{0;4\right\}\)
a) \(A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\)
b) \(A=\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Kết hợp đk:
\(\Rightarrow0\le x< 1\)
c) \(A=\dfrac{1}{\sqrt{x}-1}\in Z\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0;2\right\}\)
\(\Rightarrow x\in\left\{0;4\right\}\)
\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)
\(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)
\(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)
\(=-3\)
\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
b, Ta có \(B< A\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)
\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)
\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)
Vậy ...
a: \(P=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
b: Để P là số nguyên thì \(\sqrt{a}-1⋮\sqrt{a}\)
hay \(a\in\varnothing\)