K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

a) \(P=\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1+\dfrac{\sqrt{x}}{x+1}\right)\)

\(P=\left[\dfrac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right]:\left(\dfrac{x+1+\sqrt{x}}{x+1}\right)\)

\(P=\left[\dfrac{2\sqrt{x}-\left(x+1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]:\left(\dfrac{x+1+\sqrt{x}}{x+1}\right)\)

\(P=\left[\dfrac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]:\left(\dfrac{x+1+\sqrt{x}}{x+1}\right)\)

\(P=\left[\dfrac{-\left(\sqrt{x}-1\right)}{\left(x+1\right)}\right]:\left(\dfrac{x+1+\sqrt{x}}{x+1}\right)\)

\(P=\left[\dfrac{-\left(\sqrt{x}-1\right)}{x+1+\sqrt{x}}\right]\)

b) điều kiện \(x+\sqrt{x}+1\ne0\)

Giả sử P\(\le0\)

\(\Rightarrow\left[\dfrac{-\left(\sqrt{x}-1\right)}{x+1+\sqrt{x}}\right]\le0\)

\(-(\sqrt{x}-1)\le0\)

\(\Rightarrow\sqrt{x}-1\le0\Leftrightarrow\sqrt{x}\le1\Leftrightarrow x\le1\)

Vậy khi x\(\le1\) thì P \(\le0\)

14 tháng 1 2018

\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+1+\sqrt{x}}{x+1}=P\)

\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\dfrac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right).\dfrac{x+1}{x+1+\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\dfrac{x+1}{x+1+\sqrt{x}}\)

\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}.\dfrac{1}{x+1+\sqrt{x}}\)

\(=\dfrac{1-\sqrt{x}}{x+\sqrt{x}+1}\)

b/DKXD:x≥0,x≠1,x≠-1

\(P=\dfrac{1-\sqrt{x}}{x+\sqrt{x}+1}< 0\)

Vi x+can(x)+1>0 , P<0

\(=>1-\sqrt{x}< 0\)

=>x>1

Vay để P<0 thì x>1

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

a)

\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ P=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b)

\(Q< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}< 0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\\ \Leftrightarrow0< x< 4\)

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)

Bài 2:

\(=\sqrt{8-4\sqrt{3}}\cdot\sqrt{\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}}\)

\(=\sqrt{8-4\sqrt{3}}\cdot\sqrt{\dfrac{\left(\sqrt{6}+\sqrt{2}\right)^2}{6-2}}\)

\(=\left(\sqrt{6}-\sqrt{2}\right)\cdot\dfrac{\left(\sqrt{6}+\sqrt{2}\right)}{2}\)

\(=\dfrac{6-2}{2}=\dfrac{4}{2}=2\)

20 tháng 7 2018

hình như bước quy đồng của bạn bị sai dấu í

27 tháng 7 2018

a/ \(A=\left(\dfrac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+3}{1-\sqrt{x}}\right)\cdot\left(\dfrac{x-1}{2x+\sqrt{x}-1}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\right)\cdot\left(\dfrac{x-1}{2x+\sqrt{x}-1}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\cdot\dfrac{x-1}{2x+\sqrt{x}-1}=\dfrac{-3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(2x+2\sqrt{x}-\sqrt{x}-1\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}=\dfrac{-3}{2\sqrt{x}-1}\)

b/ \(A< 0\Leftrightarrow\dfrac{-3}{2\sqrt{x}-1}< 0\)

Ta thấy -3 < 0 nên để A < 0 thì:

\(2\sqrt{x}-1>0\)

\(\Leftrightarrow2\sqrt{x}>1\)

\(\Leftrightarrow\sqrt{x}>\dfrac{1}{2}\Leftrightarrow x>\dfrac{1}{4}\)

Vậy \(x>\dfrac{1}{4}\) thì A < 0