Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download
Trước hết ta rút gọn D :
\(D=\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)(ĐKXĐ : \(a\ne0,b\ne0,ab\ne1\))
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}-\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{\left(1-\sqrt{ab}\right)\left(1+\sqrt{ab}\right)}:\frac{1+a+b+ab}{1-ab}\)
\(=\frac{2\sqrt{a}\left(b+1\right)}{1-ab}.\frac{1-ab}{\left(a+1\right)\left(b+1\right)}=\frac{2\sqrt{a}}{a+1}\)
a) Với \(a=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow D=\frac{2\sqrt{\left(\sqrt{3}-1\right)^2}}{4-2\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}\)
b) Ta có : \(\left(\sqrt{a}-1\right)^2\ge0\Leftrightarrow a+1\ge2\sqrt{a}\Leftrightarrow\frac{2\sqrt{a}}{a+1}\le1\)
Suy ra Max D = 1 <=> a = 1
a) B= \(\frac{1}{\sqrt{a}}\)(ĐKXĐ: a,b>0) B) Khi a= \(6+2\sqrt{5}\)thì B=\(\frac{1}{\sqrt{\left(\sqrt{5}+1\right)^2}}\)=\(\frac{1}{\sqrt{5}+1}\) C) Do \(\sqrt{a}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>-1\)
ĐKXĐ:...
\(P=\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)+\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}-1\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)-\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}+1\right)\)
\(=\left(\frac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}\right):\left(\frac{-2\sqrt{a}-2}{ab-1}\right)=\frac{\sqrt{ab}\left(\sqrt{a}+1\right)}{\left(ab-1\right)}.\frac{\left(ab-1\right)}{-\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)
\(b=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left(\sqrt{3}-1\right)^2}{2}=2-\sqrt{3}\)
\(\Rightarrow P=-\sqrt{ab}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)
\(\sqrt{a}+\sqrt{b}=4\Rightarrow\sqrt{b}=4-\sqrt{a}\)
\(\Rightarrow P=-\sqrt{a}\left(4-\sqrt{a}\right)=a-4\sqrt{a}=\left(\sqrt{a}-2\right)^2-4\ge-4\)
\(\Rightarrow P_{min}=-4\) khi \(\sqrt{a}-2=0\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=4\end{matrix}\right.\)