K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

14 tháng 8 2020

a) \(A=\left|x+\frac{2}{3}\right|\ge0\)

Min A = 0 \(\Leftrightarrow x=\frac{-2}{3}\)

b) \(B=\left|x\right|+\frac{2}{3}\ge\frac{2}{3}\)

Min \(B=\frac{2}{3}\)\(\Leftrightarrow x=0\)

c) \(C=\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\)

Min C = 3 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

d) \(F=\left|x-5\right|+\left|x+4\right|\ge\left|5-x+x+4\right|=\left|9\right|=9\)

Min F = 9 

\(\Leftrightarrow x\ge5\)

14 tháng 8 2020

Ta có : \(A=\left|x+\frac{2}{3}\right|\ge0\forall x\)

Dấu "=" xảy ra <=> x + 2/3 = 0 => x = -2/3

Vậy GTNN của A là 0 khi x = -2/3

b) Vì \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\frac{1}{3}\ge\frac{1}{3}\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy GTNN của B là 1/3 khi x = 0

c) \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

Vậy GTNN của C là 3 <=> x = 1/2 ; y = 0

d) Ta có F = |x - 5| + |x + 4| = |5 - x| + |x + 4| \(\ge\)|5 - x + x + 4| = |9| = 9

Dấu "=" xảy ra <=>\(\left(5-x\right)\left(x+4\right)\ge0\)

TH1 : \(\hept{\begin{cases}5-x\le0\\x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge5\\x\le-4\end{cases}}\left(\text{loại}\right)\)

TH2 : \(\hept{\begin{cases}5-x\ge0\\x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-4\end{cases}}\Rightarrow-4\le x\le5\left(tm\right)\)

Vậy GTNN của F là 9 khi \(-4\le x\le5\)

22 tháng 2 2018

Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0

\(\Rightarrow4-x=1\rightarrow x=3\)

thay vào ta đc A=3

B3

\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)

Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )

Vậy gtln của 3/4-x là 3 thay vào ta đc b=4

Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)

22 tháng 2 2018

B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)

VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}

\(\Rightarrow\)x={0;-1;23}

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)