Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{1+\sin}{1-\sin}}-\sqrt{\frac{1-\sin}{1+\sin}}\)
\(=\sqrt{\frac{1-\sin^2}{\left(1-\sin\right)^2}}-\sqrt{\frac{1-\sin^2}{\left(1+\sin\right)^2}}\)
\(=\sqrt{\frac{\cos^2}{\left(1-\sin\right)^2}}-\sqrt{\frac{\cos^2}{\left(1+\sin\right)^2}}\)
\(=\frac{\cos}{1-\sin}-\frac{\cos}{1+\sin}=\cos.\left(\frac{1}{1-\sin}-\frac{1}{1+\sin}\right)\)
\(=\cos.\frac{2\sin}{1-\sin^2}=\frac{2\sin\cos}{\cos^2}=\frac{2\sin}{\cos}=2\tan\)
ta có : \(A=cot\alpha+\dfrac{sin\alpha}{1+cos\alpha}=\dfrac{cos\alpha}{sin\alpha}+\dfrac{sin\alpha}{1+cos\alpha}\)
\(=\dfrac{cos\alpha\left(1+cos\alpha\right)+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{cos\alpha+cos^2\alpha+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\)
\(=\dfrac{1+cos\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{1}{sin\alpha}\)
\(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\sin^2\alpha+\left(\frac{7}{5}-\sin\alpha\right)^2=1\)
\(\Rightarrow25\sin^2\alpha-35\sin\alpha+12=0\)
\(\Rightarrow\left(5\sin\alpha-4\right)\left(5\sin\alpha-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sin\alpha=\frac{4}{5}\\\sin\alpha=\frac{3}{5}\end{cases}}\)
Nếu \(\sin\alpha=\frac{4}{5}\)thì \(\cos\alpha=\frac{3}{5}\Rightarrow\tan\alpha=\frac{4}{3}\)
Nếu \(\sin\alpha=\frac{3}{5}\)thì \(\cos\alpha=\frac{4}{5}\Rightarrow\tan\alpha=\frac{3}{4}\)
Tk cho mk bạn nhá
\(a,=\frac{2cos^2\alpha-cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}\\ =\frac{cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}\\ =cos\alpha-sin\alpha\)
\(b,sin25=cos65;cos70=sin20;Khiđó:B=1\)
Vì tam giác ABC vuông tại A có AM là trung tuyến
\(\(\Rightarrow MA=MB=MC=\frac{BC}{2}\)\)
=> tam giác MAC cân tại M
=> ^MAC = ^ MCA \(\(=\alpha\)\)
Mà ^AMB là góc ngoài tam giác MAC
\(\(\Rightarrow\widehat{AMB}=\widehat{MAC}+\widehat{MCA}=2\alpha\)\)
Có \(\(1-cos2\alpha=1-\frac{MH}{MA}=\frac{MA-MH}{MA}=\frac{MB-MH}{MA}=\frac{BH}{BM}\)\)
Lại có :\(\(sin\alpha=\frac{AB}{BC}\)\)
\(\(\Rightarrow2sin^2\alpha=\frac{2AB^2}{BC^2}\)\)
Theo hệ thức lượng trong tam giác vuông \(\(AB^2=BH.BC\)\)
\(\(\Rightarrow2sin^2\alpha=\frac{2BH.BC}{BC^2}=\frac{2BH}{BC}\)\)
Mà BC = 2 BM \(\(\Rightarrow2sin^2\alpha=\frac{2BH}{2BM}=\frac{BH}{BM}=1-cos2\alpha\)\)
Vậy \(\(1-cos2\alpha=2sin^2\alpha\)\)
Sửa: \(A=\dfrac{\cos70^0-\sin\alpha}{\tan60^0-\cot70^0}\)
Vì \(\sin\alpha>\sin20^0\Leftrightarrow\cos70^0-\sin\alpha< \sin20^0-\sin20^0=0\)
Mà \(\tan60^0-\cot70^0=\tan60^0-\tan20^0>0\)
Do đó \(A< 0,\forall20^0< \alpha< 90^0\)