K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

Sửa: \(A=\dfrac{\cos70^0-\sin\alpha}{\tan60^0-\cot70^0}\)

Vì \(\sin\alpha>\sin20^0\Leftrightarrow\cos70^0-\sin\alpha< \sin20^0-\sin20^0=0\)

Mà \(\tan60^0-\cot70^0=\tan60^0-\tan20^0>0\)

Do đó \(A< 0,\forall20^0< \alpha< 90^0\)

 

26 tháng 9 2019

\(a,=\frac{2cos^2\alpha-cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}\\ =\frac{cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}\\ =cos\alpha-sin\alpha\)

\(b,sin25=cos65;cos70=sin20;Khiđó:B=1\)

7 tháng 6 2018

a, Sử dụng tích chéo:

Ta có:

+/ \(\cos\alpha.\cos\alpha=\cos^2\alpha\) (1)

+/ \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=1-\sin^2\alpha\)

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow1-\sin^2\alpha=\cos^2\alpha\)

hay \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=\cos^2\alpha\) (2)

Từ (1), (2)

\(\Rightarrow\)\(\cos\alpha.\cos\alpha=\)\(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)\)

\(\Rightarrow\)\(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\) (đpcm)

b/ xem lại đề

7 tháng 6 2018

sr bạn nha mình ghi thiếu đằng sau biểu thức đó là = 4

NV
18 tháng 6 2019

\(A=\frac{1-2sina.cosa}{sin^2a-cos^2a}=\frac{sin^2a+cos^2a-2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}\)

b/ \(A=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{\frac{1}{3}-1}{\frac{1}{3}+1}=-\frac{1}{2}\)

30 tháng 7 2021

\(\left(\sqrt{\dfrac{1+sin\alpha}{1-sin\alpha}}+\sqrt{\dfrac{1-sin\alpha}{1+sin\alpha}}\right).\dfrac{1}{\sqrt{1+tan^2\alpha}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{\left(1-sin\alpha\right)\left(1+sin\alpha\right)}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{\left(1+sin\alpha\right)\left(1-sin\alpha\right)}}\right).\dfrac{1}{\sqrt{1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{1-sin^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{1-sin^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{cos^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{cos^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{1}{cos^2\alpha}}}\)

\(=\left(\dfrac{1+sin\alpha}{cos\alpha}+\dfrac{1-sin\alpha}{cos\alpha}\right).\dfrac{1}{\dfrac{1}{cos\alpha}}=\dfrac{2}{cos\alpha}.cos\alpha=2\)

18 tháng 7 2017

đề có vẻ sai

18 tháng 7 2017

Tớ cũng nghỉ vậy.

21 tháng 6 2021

a) Cần chứng minh \(\dfrac{1-cos\alpha}{sin\alpha}=\dfrac{sin\alpha}{1+cos\alpha}\)

\(\Rightarrow sin^2\alpha=\left(1-cos\alpha\right)\left(1+cos\alpha\right)\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha+cos^2\alpha=1\)

Giả sử tam giác ABC vuông tại A

Ta có: \(\left\{{}\begin{matrix}sin^2B=\dfrac{AC^2}{BC^2}\\cos^2B=\dfrac{AB^2}{BC^2}\end{matrix}\right.\Rightarrow sin^2B+cos^2B=\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\)

 

 

21 tháng 6 2021

a)\(\dfrac{1-cosa}{sina}=\dfrac{sina}{1+cosa}\)

<=>\(\left(1-cosa\right)\left(1+cosa\right)=sin^2a\)

<=>\(1-cos^2a=sin^2a\) (lđ)

b)Ta có VT=\(\dfrac{cosa}{1+sina}+tga=\dfrac{cosa}{1+sina}+\dfrac{sina}{cosa}=\dfrac{cos^2a+sin^2a+sina}{\left(1+sina\right)cosa}=\dfrac{1+sina}{\left(1+sina\right)cosa}=\dfrac{1}{cosa}=vp\left(dpcm\right)\)

 

18 tháng 1 2017

Đợi mình 2 tháng nữa làm cho

19 tháng 1 2017

\(\sqrt{\frac{1+\sin}{1-\sin}}-\sqrt{\frac{1-\sin}{1+\sin}}\)

\(=\sqrt{\frac{1-\sin^2}{\left(1-\sin\right)^2}}-\sqrt{\frac{1-\sin^2}{\left(1+\sin\right)^2}}\)

\(=\sqrt{\frac{\cos^2}{\left(1-\sin\right)^2}}-\sqrt{\frac{\cos^2}{\left(1+\sin\right)^2}}\)

\(=\frac{\cos}{1-\sin}-\frac{\cos}{1+\sin}=\cos.\left(\frac{1}{1-\sin}-\frac{1}{1+\sin}\right)\)

\(=\cos.\frac{2\sin}{1-\sin^2}=\frac{2\sin\cos}{\cos^2}=\frac{2\sin}{\cos}=2\tan\)

10 tháng 8 2017

a) Ta có : sin\(^2\)12o=cos278o=> sin212o+sin278o=1.

tương tự => A=3

10 tháng 8 2017

b) tương tự câu (a) ta có: cos215o=sin275o ( do 15+75=90 nha bạn ) => cos215o+cos275o=1. Tương tự => B=0

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán