Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(x=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}=4\)
Thay x = 4 => \(\sqrt{x}=2\) vào B ta được :
\(B=\frac{2+5}{2-3}=-7\)
b, Ta có : Với \(x\ge0;x\ne9\)
\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13-\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}=\frac{x-25}{x-9}\)
Lại có \(P=\frac{A}{B}\Rightarrow P=\frac{\frac{x-25}{x-9}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
1) H nhận giá trị nguyên => 3H nhận giá trị nguyên
Ta có: \(3H=\dfrac{3\sqrt{x}-9}{3\sqrt{x}+5}=\dfrac{3\sqrt{x}+5}{3\sqrt{x}+5}-\dfrac{14}{3\sqrt{x}+5}=3-\dfrac{14}{3\sqrt{x}+5}\)
3H nguyên <=> \(\dfrac{14}{3\sqrt{x}+5}\) nhận giá trị nguyên
<=> \(3\sqrt{x}+5\inƯ\left(14\right)\)
mà \(3\sqrt{x}+5\ge5;3\sqrt{x}+5\ne8\)
=> \(3\sqrt{x}+5\in\left\{7;14\right\}\Leftrightarrow3\sqrt{x}\in\left\{2;9\right\}\Leftrightarrow\sqrt{x}\in\left\{\dfrac{2}{3};3\right\}\Leftrightarrow x\in\left\{\dfrac{4}{9};9\right\}\)
Lại có \(x\in Z\) => x = 9
Thử lại: với x = 9 thì \(H=\dfrac{\sqrt{9}-3}{3\sqrt{9}+5}=0\left(TM\right)\)
Vậy...
Câu còn lại tương tự
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{8\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+8}{\sqrt{x}-3}\)
Do \(A>0\) \(\forall x\ge0\Rightarrow\)để P xác định thì \(B\ge0\Rightarrow x>9\)
\(\Rightarrow P=\sqrt{\dfrac{\sqrt{x}+8}{\sqrt{x}-3}.\dfrac{x+7}{\sqrt{x}+8}}=\sqrt{\dfrac{x+7}{\sqrt{x}-3}}=\sqrt{\sqrt{x}+3+\dfrac{16}{\sqrt{x}-3}}\)
\(\Rightarrow P=\sqrt{\sqrt{x}-3+\dfrac{16}{\sqrt{x}-3}+6}\ge\sqrt{2\sqrt{\dfrac{16\left(\sqrt{x}-3\right)}{\sqrt{x}-3}}+6}=\sqrt{14}\)
\(\Rightarrow P_{min}=\sqrt{14}\) khi \(x=49\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-9\ne0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}=\dfrac{3\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}=\dfrac{3\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}\)2) Để A=\(\dfrac{5}{6}\) thì \(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}=\dfrac{5}{6}\Leftrightarrow\left(\sqrt{x}+1\right)6=\left(\sqrt{x}+3\right)5\Leftrightarrow6\sqrt{x}+6=5\sqrt{x}+15\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\)
1. Ta có:
\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}\)
\(=\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)}{3\left(x-9\right)}+\dfrac{1}{3}\)
\(=\dfrac{2x-6\sqrt{x}}{3\left(x-9\right)}+\dfrac{x-9}{3\left(x-9\right)}\)
\(=\dfrac{3x-6\sqrt{x}-9}{3x-27}\)
\(=\dfrac{x-2\sqrt{x}-3}{x-9}\)
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
a) Rút gọn : Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right).\frac{\sqrt{x}-3}{2}\left(x\ge0,x\ne9\right)\)
Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}+\frac{14}{x-9}\right).\frac{\sqrt{x}-3}{2}\)
Q =\(\left(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{2\left(x+16\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{x+16}{\sqrt{x}+3}\)
thay \(x=7-4\sqrt{3}\) vào Q ta được
Q =\(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) =\(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2+3}}\)
=\(\frac{23-4\sqrt{3}}{2-\sqrt{3}+3}\)
=\(\frac{23-4\sqrt{3}}{5-\sqrt{3}}\)
a, Q = \(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right)\times\frac{\sqrt{x}-3}{2}\)
= \(\left[\frac{\left(\sqrt{x}-3\right)^2+\left(\sqrt{x}+3\right)^2+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)
= \(\left[\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)
= \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\times\frac{\sqrt{x}-3}{2}\)
= \(\frac{2\left(x+16\right)\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x+16}{\sqrt{x}+3}\)
Thay \(x=7-4\sqrt{3}\) vào Q ta được:
Q= \(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) = \(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2}+3}\)=\(\frac{23-4\sqrt{3}}{2+3-\sqrt{3}}=\frac{23-4\sqrt{3}}{5-\sqrt{3}}=\frac{\left(23-4\sqrt{3}\right)\left(5+\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}\) =\(\frac{103+3\sqrt{3}}{22}\)
b,
\(Q=\frac{x+16}{\sqrt{x}+3}=\frac{x+9+7}{\sqrt{x}+3}=2+\frac{7}{\sqrt{x}+3}\)
Ta có \(2+\frac{7}{\sqrt{x}+3}\) nhỏ nhất khi \(\sqrt{x}+3\) nhỏ nhất
Mà với điều kiện \(x\ge0\) nên GTNNQ=\(2+\frac{7}{3}=\frac{13}{3}\)
Ta thấy \(x>0\) nên ta có thể suy ra \(\sqrt{x}=\sqrt{4-2\sqrt{3}}\) \(=\sqrt{3-2\sqrt{3}+1}\) \(=\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}\) \(=\sqrt{\left(\sqrt{3}-1\right)^2}\) \(=\sqrt{3}-1\) (do \(\sqrt{3}-1>0\))
Từ đó \(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) \(=\dfrac{\sqrt{3}-1+1}{\sqrt{3}-1-3}\) \(=\dfrac{\sqrt{3}}{\sqrt{3}-4}\) \(=\dfrac{\sqrt{3}\left(\sqrt{3}+4\right)}{\left(\sqrt{3}-4\right)\left(\sqrt{3}+4\right)}\) \(=\dfrac{3+4\sqrt{3}}{\left(\sqrt{3}\right)^2-4^2}\) \(=-\dfrac{3+4\sqrt{3}}{13}\)
Ta có : \(x\text{=}4-2\sqrt{3}\)
\(\Rightarrow x=3-2\sqrt{3}+1\)
\(\Rightarrow x=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}\text{=}\sqrt{3}-1\)
Do đó :
\(Q\text{=}\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(Q\text{=}\dfrac{\sqrt{3}-1+1}{\sqrt{3}-1-3}\)
\(Q\text{=}\dfrac{\sqrt{3}}{\sqrt{3}-4}\)
Chắc đến đây thôi nhỉ .