Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
Tự tìm ĐKXĐ nhé
\(P=\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}+2}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
c, \(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow1+\frac{2}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{-1;0\right\}\)
\(\Rightarrow x=\left\{0\right\}\)
Kết hợp với ĐKXĐ =>...
a/ ĐKXĐ : \(0\le x\ne4\)
\(B=\frac{x\sqrt{x}+15\sqrt{x}-35}{x-\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\frac{x\sqrt{x}+15\sqrt{x}-35-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x\sqrt{x}+15\sqrt{x}-35-x+4-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x\sqrt{x}-2x+15\sqrt{x}-30}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(x+15\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{x+15}{\sqrt{x}+1}\)
c/ \(x=21-4\sqrt{5}=\left(2\sqrt{5}-1\right)^2\) thay vào B được
\(B=\frac{21-4\sqrt{5}+15}{2\sqrt{5}-1+1}=\frac{36-4\sqrt{5}}{2\sqrt{5}}=\frac{-10+18\sqrt{5}}{5}\)
d/ Đặt \(t=\sqrt{x},t\ge0\) thì \(B=\frac{t^2+15}{t+1}=6\Leftrightarrow t^2+15=6\left(t+1\right)\Leftrightarrow t^2-6t+9=0\Leftrightarrow t=3\)
=> x = 9
e/ \(B=\frac{t^2+15}{t+1}=\frac{6\left(t+1\right)+\left(t^2-6t+9\right)}{t+1}=\frac{\left(t-3\right)^2}{t+1}+6\ge6\)
Đẳng thức xảy ra khi t = 3 <=> x = 9
Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9
a/ ĐKXĐ : 0≤x≠4
B=x√x+15√x−35x−√x−2 −√x+2√x+1 −√x−1√x−2
=x√x+15√x−35−(√x+2)(√x−2)−(√x+1)(√x−1)(√x+1)(√x−2)
=x√x+15√x−35−x+4−x+1(√x+1)(√x−2)
=x√x−2x+15√x−30(√x+1)(√x−2) =(√x−2)(x+15)(√x+1)(√x−2) =x+15√x+1
c/ x=21−4√5=(2√5−1)2 thay vào B được
B=21−4√5+152√5−1+1 =36−4√52√5 =−10+18√55
d/ Đặt t=√x,t≥0 thì B=t2+15t+1 =6⇔t2+15=6(t+1)⇔t2−6t+9=0⇔t=3
=> x = 9
e/ B=t2+15t+1 =6(t+1)+(t2−6t+9)t+1 =(t−3)2t+1 +6≥6
Đẳng thức xảy ra khi t = 3 <=> x = 9
Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9
\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)
\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế
P=(√x+3√x+2+4x√x+3x+9x−√x−6):(√x√x+3+2√x+3x+5√x+6)
=[(√x+3)(√x−3)(√x+2)(√x−3)+4x√x+3x+9(√x+2)(√x−3)]:[√x(√x+2)(√x+3)(√x+2)+2√x+3(√x+3)(√x+2)]
=x−9+4x√x+3x+9(√x+2)(√x−3):x+2√x+2√x+3(√x+3)(√x+2)
=4x√x+4x(√x+2)(√x−3)⋅(√x+3)(√x+2)(√x+1)(√x+3)
=4x(√x+1)(√x−3)(√x+1)=4x√x−3
b/ P=48⇔4x√x−3=48
⇔4x=48√x−144
⇔4x−48√x+144=0
⇔(2√x−12)2=0
⇔2√x−12=0⇔√x=6⇔x=36(TM)
Vậy................