K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2020

a, ĐKXĐ : \(2x-3\ge0\)

=> \(x\ge\frac{3}{2}\)

Ta có : \(P=x-2\sqrt{2x-3}\)

- Đặt \(t=\sqrt{2x-3}\left(t\ge0\right)\)

=> \(t^2=2x-3\)

=> \(x=\frac{t^2+3}{2}\)

- Thay vào P ta được : \(P=\frac{t^2+3}{2}-2t\)

b, Ta có : \(P=\frac{t^2+3-4t}{2}\)

=> \(P=\frac{t^2-4t+4-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)

Ta thấy : \(\left(t-2\right)^2\ge0\forall x\)

=> \(\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)

Vậy \(Min_P=-\frac{1}{2}\) <=> \(t-2=0\)

<=> \(t=2\left(TM\right)\)

<=> \(\sqrt{2x-3}=2\)

<=> \(2x-3=4\)

<=> \(2x=7\)

<=> \(x=\frac{7}{2}\left(TM\right)\)

10 tháng 7 2020

a)đặt t=\(\sqrt{2x-3}\)

=>P=x-2t

=>t=\(\frac{x-P}{2}\)

29 tháng 6 2020

 \(t=\sqrt{2x-3}=>\frac{t^2+3}{2}=x\)

\(=>P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)

ta có \(\frac{\left(t-2\right)^2}{2}\ge0\left(\forall t\right)\)

\(=>\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\left(\forall t\right)\)

minP=-1/2

dấu = xảy ra khi x=7/2

29 tháng 6 2020

a) \(t=\sqrt{2x-3}\ge0\)

<=> \(t^2=2x-3\)

<=> \(x=\frac{t^2+3}{2}\)

=> \(P=\frac{t^2+3}{2}-2t\)

b) khi đó: \(P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra <=> t = 2  khi đó: x = 7/2

1 tháng 1 2017

có cho x dương ko để xài Cosi

11 tháng 3 2017

Mình nghĩ lớp 9 phải biết cosi rồi.

a.

\(y=\sqrt{x+2}\Rightarrow y^2=\left(\sqrt{x+2}\right)^2\)

                    \(\Rightarrow y^2=x+2\)

                    \(\Rightarrow x=y^2-2\)

thay vào A ta có:\(A=x-2\sqrt{x+2}\)

\(\Rightarrow A=y^2-2y=y^2-2y-2\)

b.

\(A=x-2\sqrt{x+2}\)

Điều kiện:x+2≥0⇔x>-2

ta có:\(A=x-2\sqrt{x+2}\)

            \(=\left(x+2\right)-2\sqrt{x+2}.1+1-3\)

            \(=\left(\sqrt{x+12}-1\right)^2-3\)

vì \(\left(\sqrt{x+2}-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(\sqrt{x+2}-1\right)^2-3\ge-3\forall x\)

vậy GTNN của A là-3

8 tháng 7 2021

a/ y=\(\sqrt{x+2}\)\(y^2-2=x\)

⇒A=\(y^2-2-2y\)

b/ A=\(y^2-2y-2\)=\(\left(y^2-2y+1\right)-3\)=\(\left(y-1\right)^2-3\)≥ -3

\(A_{min}=-3\)

dấu = xảy ra khi y=1⇒x= -1

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Lời giải:
\(t=\sqrt{2x-3}\Rightarrow t^2=2x-3\Rightarrow x=\frac{t^2+3}{2}\)

Khi đó:

\(P=x-2\sqrt{2x-3}=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}\)

a: \(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-2x}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

b: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để |P|>P thì P<0

=>căn x-2<0

=>0<x<4

=>x=1