Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-1\le x< 2m\\2m>m-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-1\le x< 2m\\m>-1\end{matrix}\right.\)
Để hàm số xác định trên \(\left(-1;3\right)\) thì:
\(\left\{{}\begin{matrix}m-1\le-1\\2m>3\\m>-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\m>\frac{3}{2}\\m>-1\end{matrix}\right.\) \(\Rightarrow m=\varnothing\)
Vậy ko tồn tại m thỏa mãn
ĐKXĐ: \(x\ge2m-1\)
Để hàm xác định trên đoạn đã cho \(\Rightarrow2m-1\le1\Rightarrow m\le1\)
Tìm tất cả giá trị thực m để hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định khoảng (1;3)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\) \(\Leftrightarrow m-1\le x< 2m\)
Để miền xác định của hàm khác rỗng \(\Rightarrow2m>m-1\Rightarrow m>-1\)
Khi đó để hàm xác định trên \(\left(1;3\right)\)
\(\Leftrightarrow\left(1;3\right)\subset[m-1;2m)\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-1\le1\\2m\ge3\end{matrix}\right.\) \(\Rightarrow\frac{3}{2}\le m\le2\)
câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)
\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)
\(\Rightarrow\dfrac{1}{16}\le M\le61\)
\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)
câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)
\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)
\(\Rightarrow3\le M\le7\)
\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)
\(\Rightarrow M_{min}=-6\) khi \(x=2\)
4) điều kiện xác định \(-6\le x\le10\)
ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)
áp dụng bunhiacopxki dạng căn ta có :
\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)
\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)
\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)
\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)
\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự
Bạn coi lại đề, ko có khái niệm 2 tập hợp lớn hơn / nhỏ hơn nhau
Nên \(D_2< D_1\) là vô nghĩa