K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(B=\left(\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-4}{x-3}-\dfrac{x-1}{x+3}\right):\left(1-\dfrac{1}{x+3}\right)\)

\(=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+3-1}{x+3}\)

\(=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{\left(x+3\right)}{x+2}=\dfrac{3}{x+2}\)

b: |2x+1|=5

=>2x+1=5 hoặc 2x+1=-5

=>x=2(nhận) hoặc x=-3(loại)

Khi x=2 thì B=3/4

c: để B=-3/5 thì x+2=-5

=>x=-7

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

21 tháng 12 2018

\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)

            \(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)

\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)

Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên

                                \(\Leftrightarrow10⋮2x+1\)

                                \(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)

\(\Rightarrow x=-1;0;-3;2\)

Vậy.......................

29 tháng 2 2020

1, \(=\left[\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}-x\right]:\frac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)

\(=\left(1+x+x^2-x\right):\frac{1-x^2}{\left(1-x\right)\left(1-x^2\right)}\)\(=\left(x^2+1\right)\left(1-x\right)\)

2, để B<0 <=> (x2+1)(1-x)<0

vì x^2+1 > 0 với mọi x

=> \(\hept{\begin{cases}x^2+1>0\\1-x< 0\end{cases}\Leftrightarrow x>1}\)

3, \(\left|x-4\right|=5\Leftrightarrow\orbr{\begin{cases}x=9\\x=-1\left(loại\right)\end{cases}}\)

Thay x=9 vào B ta có: B=(92+1)(1-9)=82.(-8)=-656

24 tháng 5 2022

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

a) ĐKXĐ: x∉{3;-3}

Ta có: \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)

\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)

\(=\frac{21+x^2-x-12-\left(x^2-4x+3\right)}{\left(x-3\right)\left(x+3\right)}:\frac{x+2}{x+3}\)

\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+2}\)

\(=\frac{3\left(x+2\right)}{x-3}\cdot\frac{1}{x+2}=\frac{3}{x-3}\)

b) Ta có: |2x+1|=5

\(\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Do x=-3 không thỏa mãn ĐKXĐ nên ta chỉ tính giá trị của B tại x=2

Thay x=2 vào biểu thức \(B=\frac{3}{x-3}\), ta được:

\(\frac{3}{2-3}=\frac{3}{-1}=-3\)

Vậy: -3 là giá trị của biểu thức \(B=\frac{3}{x-3}\) tại x=2

c) Ta có: \(B=\frac{-3}{5}\)

\(\frac{3}{x-3}=\frac{-3}{5}\)

\(\Leftrightarrow x-3=\frac{5\cdot3}{-3}=\frac{15}{-3}=-5\)

hay x=-2(tm)

Vậy: Khi \(B=\frac{-3}{5}\) thì x=-2

d) Để B<0 thì \(\frac{3}{x-3}< 0\)

mà 3>0

nên x-3<0

hay x<3

Vậy: Khi x<3 và x≠-3 thì B<0

3 tháng 8 2019

a, ĐKXĐ: \(x\notin\left\{-2;\pm3\right\}\)

\(B=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{x-4}{x-3}-\frac{x-1}{x+3}\right):\frac{x+3-1}{x+3}\\ =\frac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+2}\\ =\frac{21+x^2-x-12-\left(x^2-4x+3\right)}{x-3}\cdot\frac{1}{x+2}\\ =\frac{x^2-x+9-x^2+4x-3}{\left(x-3\right)\left(x+2\right)}\\ =\frac{3x+6}{\left(x-3\right)\left(x+2\right)}\\ =\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}=\frac{3}{x-3}\)

b, Ta có:

\(\left|2x+1\right|=5\Leftrightarrow\left\{{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-3\left(ktm\right)\end{matrix}\right.\)

Suy ra, với \(x=2\), ta được:

\(B=\frac{3}{2-3}=\frac{3}{-1}=-3\)

c, Để \(B=\frac{-3}{5}\) thì:

\(\frac{3}{x-3}=\frac{-3}{5}\\ \Leftrightarrow\frac{-3}{3-x}=\frac{-3}{5}\\ \Leftrightarrow3-x=5\Leftrightarrow x=-2\left(ktm\right)\)

Hay không có giá trị nào sao cho \(B=\frac{-3}{5}\).

d, Do 3>0 nên để B<0 thì: \(x-3< 0\Leftrightarrow x< 3\).

Kết hợp với ĐKXĐ, ta có điều kiện: \(\left\{{}\begin{matrix}x< 3\\x\notin\left\{-2;-3\right\}\end{matrix}\right.\)

Chúc bạn học tốt nha.