K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)

19 tháng 8 2017

a) Q=\(\left(\dfrac{2x+1}{\sqrt{x}^3-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x}^3}{1+\sqrt{x}}-\sqrt{x}\right)\)

=\(\left(\dfrac{2x+1-x+\sqrt{x}}{\sqrt{x}^3-1}\right)\left(\dfrac{1+\sqrt{x}^3-\sqrt{x}-x}{1+\sqrt{x}}\right)\)

=\(\dfrac{\sqrt{x}+x+1}{\sqrt{x}^3-1}.\left(-2\sqrt{x}+1\right)\)

=\(\dfrac{\left(-2\sqrt{x}+1\right)\left(\sqrt{x}+x+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)=\(\dfrac{\left(-2\sqrt{x}+1\right)}{\sqrt{x}-1}\)

b) ta có : Q=3 => \(\dfrac{-2\sqrt{x}+1}{\sqrt{x}-1}=3=>-2\sqrt{x}+1=3\sqrt{x}-3\)

=>x=16/25=0,64

vậy x=0,64 khi Q=3

20 tháng 8 2017

Cậu ơi cho tớ hỏi: Từ chỗ \(\left(\dfrac{1+\sqrt{x^3}-\sqrt{x}-x}{1+\sqrt{x}}\right)\)sao lại ra được \(\left(-2\sqrt{x}+1\right)\)vậy ạ?

Rep nhanh nhé

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

4 tháng 11 2017

\(M=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\dfrac{3\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x^3}-1}-\dfrac{2x+1}{\sqrt{x^3}-1}\right)\)

\(M=\left(\dfrac{x+\sqrt{x}-3\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{x-\sqrt{x}-2x-1}{\sqrt{x^3}-1}\right)\)

\(M=\left(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{-x-\sqrt{x}-1}{\sqrt{x^3}-1}\right)\)

\(M=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\dfrac{-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(M=\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\)

31 tháng 7 2017

Câu a có sai đề nên mk có sửa lại nha Liên hệ giữa phép chia và phép khai phương

Câu 1: 

a: \(Q=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b: Để Q>0 thì \(\sqrt{a}-2>0\)

=>a>4

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)

17 tháng 10 2022

a: \(P=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

b: ĐểP<15/4 thì P-15/4<0

\(\Leftrightarrow4\left(3\sqrt{x}+8\right)-15\left(\sqrt{x}+2\right)< 0\)

=>12 căn +32-15 căn x+30<0

=>-3 căn x<-62

=>căn x>62/3

=>x>3844/9