Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{3}{x-1}\)\(\left(x\in Z\right)\)
a) Để P là 1 phân số thì \(x-1\ne0\Leftrightarrow x\ne1\)
b) \(\left|x\right|=6\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
với x = 6 ta có \(P=\frac{3}{x-1}=\frac{3}{6-1}=\frac{3}{5}\)
với x = -6 ta có \(P=\frac{3}{x-1}=\frac{3}{-6-1}=\frac{-3}{7}\)
c) để P nguyên thì \(\frac{3}{x-1}\)nguyên
hay \(3⋮x-1\Rightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
1) số nguyên a phải có điều kiện gì để ta có phân số ?
a) \(\frac{32}{a-1}\)
Để ta có phân số thì \(_{a-1\ne0}\).
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1 .
Vậy với \(_{a\ne1}\)thì \(_{\frac{32}{a-1}}\)là phân số.
b)\(\frac{a}{5a+30}\)=\(\frac{a}{5\left(a+6\right)}\)
Điều kiện để 5(a+6) là phân số là:
\(_{a+6\ne0\Leftrightarrow a\ne-6}\)
Vậy với \(_{a\ne6}\)thì \(_{\frac{a}{5a+30}}\)là phân số.
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) \(\frac{13}{x-1}\)
Để \(_{\frac{13}{x-1}}\) là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
Vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) \(\frac{x+3}{x-2}\)
Ta có :
\(_{\frac{x+3}{x-2}}\)= \(_{\frac{x-2+5}{x-2}}\)= \(_{\frac{1+5}{x-2}}\)
để \(_{\frac{x+3}{x-2}}\) là số nguyên thì \(_{\frac{5}{x-2}}\) là số nguyên .
Nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
Vậy x thuộc (1,3-3,8) thì \(_{\frac{x+3}{x-2}}\)là số nguyên.
a) Số nguyên n phải: n-7 \(\inƯ\left(7\right)\)
b) Nếu n= -7 thì \(B=\frac{7}{-7}=-1\)
c) Muốn B nguyên thì n \(\in\left\{0;6;8;14\right\}\)
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
1.a.a+1 chia hết cho 3 thì a chia 3 dư 2
b.a-2 chia hết cho 5 thì a chia 5 dư 3
2.a,13 chia hết cho (x-1)
suy ra (x-1) thuộc Ư(13)={-13;-1;1;13}
suy ra x thuộc {-12;0;2;14}
b,x-3/x-2=x-2-1/x-2=1-1/x-2
để phân thức trên nguyên thì 1 chia hết cho x-2
suy ra x-2 thuộc {-1;1}
suy ra x=1;3
Trả lời:
P = \(\frac{3}{x-1}\)
a, đkxđ: \(x-1\ne0\Leftrightarrow x\ne1\)
b, Ta có: | x | = 6
=> x = 6 hoặc x = -6
Thay x = 6 vào P, ta được: \(P=\frac{3}{6-1}=\frac{3}{5}\)
Thay x = -6 vào P, ta được: \(P=\frac{3}{-6-1}=\frac{-3}{7}\)
c, Để P là số nguyên thì \(3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:
Vậy \(x\in\left\{2;0;4;-2\right\}\)thì P là số nguyên