Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(4x^2=1\)
\(\Rightarrow\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
mà \(x\ne-\frac{1}{2}\Rightarrow x=\frac{1}{2}\)
Thay \(x=\frac{1}{2}\)vào B , ta được:
\(B=\frac{\left(\frac{1}{2}\right)^2-\frac{1}{2}}{2.\frac{1}{2}+1}=\frac{\frac{1}{4}-\frac{1}{2}}{1+1}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}\)
Vậy \(B=-\frac{1}{8}\)khi \(4x^2=1\)
b)Ta có : \(A=\frac{1}{x-1}-\frac{x}{1-x^2}\)
\(=\frac{1}{x-1}+\frac{x}{x^2-1}\)
\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow M=A.B=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x^2-x}{2x+1}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x\left(x-1\right)}{2x+1}\)
\(=\frac{x}{x+1}\)
Vậy \(M=\frac{x}{x+1}\)
c)Ta có: \(x< x+1\forall x\)
\(\Rightarrow M=\frac{x}{x+1}< \frac{x+1}{x+1}=1\forall x\ne-1\)
Vậy với mọi \(x\ne-1\)thì \(M< 1\)
a, \(M=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{1}{x^2-1}\)
\(=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x+1}\right):\frac{1}{x^2-1}\)
\(=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{1}{x^2-1}\)
\(=\left(\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\right).\left(x-1\right)\left(x+1\right)=2x+1\)
b, Thay x = 1/2 vào biểu thức trên ta được : \(2.\frac{1}{2}+1=1\)
c, Để M luôn dương hay \(2x+1\ge0\Leftrightarrow x\ge-\frac{1}{2}\)
Vậy với x \(\ge-\frac{1}{2}\)thì \(M\ge0\)
Do : \(4x^2=1\)
\(< =>\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
Ta thấy điều kiện xác định của B là \(x\ne-\frac{1}{2}\)
Suy ra \(x=\frac{1}{2}\)
Ta có : \(B=\frac{x^2-x}{2x+1}=\frac{\frac{1}{4}-\frac{1}{2}}{\frac{1}{2}.2+1}=\frac{\frac{-1}{4}}{2}=-\frac{1}{8}\)
Vậy ......
Ta có : \(A=\frac{1}{x-1}+\frac{x}{x^2-1}=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x+1}{x^2-1}\)
Suy ra \(M=\frac{2x+1}{x^2-1}.\frac{x^2-x}{2x+1}=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x}{x+1}\)
M xác định
\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)
Thay x=5 ta có:
\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)
Vậy \(M=5\)tại x=5
\(M=0\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)
Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)
\(M=-1\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy với \(x=-1\)thì \(M=-1\)
\(ĐK:\hept{\begin{cases}x-1\ne0\\1+x\ne0\end{cases}\Rightarrow x\ne\pm1}\)
a) \(M=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right).\left(x^2+x+1\right)}\cdot\frac{x^2+x+1}{x+1}\right)\cdot\frac{x^2-1}{1}\)
\(M=\left(\frac{1}{x-1}-\frac{x}{1-x}\right)\cdot\frac{\left(x-1\right).\left(x+1\right)}{1}\)
\(M=\left(\frac{x+1}{\left(x-1\right).\left(x+1\right)}-\frac{-x}{\left(x-1\right).\left(x+1\right)}\right)\cdot\frac{\left(x-1\right).\left(x+1\right)}{1}\)
\(M=\frac{2x+1}{\left(x-1\right).\left(x+1\right)}\cdot\frac{\left(x-1\right).\left(x+1\right)}{1}=2x+1\)
b) \(M=2x+1=\frac{2.1}{2}+1=1+1=2\)
c) \(M=2x+1>0\Rightarrow2x>-1\Rightarrow x>-\frac{1}{2}\)và x khác +1,-1
a/ Ta có \(M=\frac{\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}}{\frac{1}{x^2-1}}\) với \(x\ne\pm1\)
\(M=\frac{\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x+1}}{\frac{1}{\left(x-1\right)\left(x+1\right)}}\)
\(M=\frac{\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x+1\right)}}{\frac{1}{\left(x-1\right)\left(x+1\right)}}\)
\(M=\frac{\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{\left(x-1\right)\left(x+1\right)}}\)
\(M=\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}.\left(x-1\right)\left(x+1\right)\)
\(M=2x+1\)
b/ Ta có \(x=\frac{1}{2}\)thoả mãn ĐKXĐ
Vậy với \(x=\frac{1}{2}\):
\(M=2x+1=2.\frac{1}{2}+1=2\)
c/ Khi M > 0
=> \(2x+1>0\)
=> \(x>-\frac{1}{2}\)
Vậy khi \(\hept{\begin{cases}x>-\frac{1}{2}\\x\ne\pm1\end{cases}}\)thì M > 0.