\(\frac{ax+by}{cx+dy}\)  (c,d\(\ne0\))

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

Do giá trị của M không phụ thuộc vào x ; y thì M luôn bằng 1 giá trị với mọi x , y  ( Trừ trường hợp \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)sẽ khiến M không tồn tại )

Đặt \(M=n\)

Với \(\hept{\begin{cases}x=0\\y=1\end{cases}}\Rightarrow n=\frac{a.0+b.1}{c.0+d.1}=\frac{b}{d}\)

Với \(\hept{\begin{cases}x=1\\y=0\end{cases}\Rightarrow}n=\frac{a.1+b.0}{c.1+d.0}=\frac{a}{c}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Leftrightarrow ad=bc\)

Vậy ...

21 tháng 7 2018

Do giá trị của \(M\)không phụ thuộc vào \(x;y\)thì \(M\)luôn bằng một giá trị với mọi \(x;y\)(Trừ trường hợp \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)sẽ khiến \(M\)không tồn tại)

Đặt \(M=n\)

Với \(\hept{\begin{cases}x=0\\y=1\end{cases}\Rightarrow n=\frac{a.0+b.1}{c.0+d.1}=\frac{b}{d}}\)

Với \(\hept{\begin{cases}x=1\\y=0\end{cases}\Rightarrow n=\frac{a.1+b.0}{c.1+b.0}=\frac{a}{c}}\)

\(\Rightarrow\frac{b}{d}=\frac{a}{c}\)

\(\Leftrightarrow ad=bc\)

Vậy \(ad=bc\)

Do giá trị của M không phụ thuộc vào x ; y thì M luôn bằng 1 giá trị với mọi x , y  ( Trừ trường hợp \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)sẽ khiến M không tồn tại )

Đặt M=nM=n

Với \(\hept{\begin{cases}x=0\\y=1\end{cases}}\Rightarrow n=\frac{a.0+b.1}{c.0+d.1}=\frac{b}{d}\)

Với \(\hept{\begin{cases}x=1\\y=0\end{cases}\Rightarrow}n=\frac{a.1+b.0}{c.1+d.0}=\frac{a}{c}\)

\Rightarrow\frac{a}{c}=\frac{b}{d}⇒ca​=db

\Leftrightarrow ad=bc⇔ad=bc

Vậy ...

2 tháng 11 2016

Vì giá trị của biểu thức A không phụ thuộc vào giá trị của x;y nên nếu x;y giảm hoặc tăng 1 số đơn vị thì giá trị của A không đổi

Giả sử x và y tăng nên lần lượt m và n đơn vị

Lúc này ta có: \(A=\frac{ax+by}{cx+dy}=\frac{a.\left(x+m\right)+b.\left(y+n\right)}{c.\left(x+m\right)+d.\left(y+n\right)}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(A=\frac{ax+by}{cx+dy}=\frac{a\left(x+m\right)+b\left(y+n\right)}{c\left(x+m\right)+d\left(y+n\right)}=\frac{\left[a\left(x+m\right)+b\left(y+n\right)\right]-\left(ax+by\right)}{\left[c\left(x+m\right)+d\left(y+n\right)\right]-\left(cx+dy\right)}\)

\(=\frac{am+bn}{cm+dn}\)

=> (ax + by).(cm + dn) = (am + bn).(cx + dy)

=> (ax + by).cm + (ax + by).dn = (am + bn).cx + (am + bn).dy

=> acxm + bcym + adxn + bdyn = acxm + bcxn + adym + bdyn

=> bcym + adxn = bcxn + adym

=> bcym - bcxn = adym - adxn

=> bc.(ym - xn) = ad(ym - xn)

=> bc = ad

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

31 tháng 10 2016

bài này mình ko biết làm nè

20 tháng 2 2019

                Lời giải

Ta có: \(M=\frac{zx+by}{cx+dy}=\frac{zx}{cx}=\frac{by}{dy}\) (tính chất tỉ dãy số bằng nhau)

Rút gọn đi,ta được: \(\frac{z}{c}=\frac{b}{d}\) là một tỉ lệ thức (đpcm) 

20 tháng 2 2019

Nhớ xét x,y khác 0 giùm con:v

22 tháng 10 2020

Thay y=0 suy ra a = Mc

Thay x=0 suy ra b = Md