K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Ta chứng minh tính chất \(\frac{a}{b}< 1\) suy ra \(\frac{a+m}{b+m}>\frac{a}{b}\)

Ta có \(1-\frac{a}{b}=\frac{b-a}{b}\)

           \(1-\frac{a+m}{b+m}=\frac{b-a}{b+m}\)

Vì \(\frac{b-a}{b}>\frac{b-a}{b+m}=>\frac{a}{b}< \frac{a+m}{b+m}\) 

Áp dụng thính chất trên ta có 

\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+t+z}+\frac{z+x}{y+z+t+x}+\frac{t+y}{x+z+t+y}\)

=> M < 2 => M10 <210=1024 <1025

Vậy M10 <1025

17 tháng 4 2017

\(\dfrac{x}{x+y+z}=\dfrac{y}{x+z+t}=\dfrac{z}{y+z+t}=\dfrac{t}{x+z+t}\\ =\dfrac{x+y+z+t}{x+y+z+x+z+y+y+z+t+x+z+t}\)

\(=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\\ hayM=\dfrac{1}{3}\)

\(M^{10}=\left(\dfrac{1}{3}\right)^{10}=\dfrac{1}{3^{10}}< 2017\)

24 tháng 4 2019

v:Câu hỏi của Bùi Quang Sang - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

16 tháng 4 2017

Đề sai rồi bạn ạ

Phải là Cho M=\(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)

Chứng minh: M10<1025

Với a,b,c là các số tự nhiên khác 0 và phân số \(\dfrac{a}{b}\)<1, ta luôn có:\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

Áp dụng bất đẳng thức trên ta có:

\(\dfrac{x}{x+y+z}< \dfrac{x+t}{x+y+z+t}\)

\(\dfrac{y}{x+y+t}< \dfrac{y+z}{x+y+z+t}\)

\(\dfrac{z}{y+z+t}< \dfrac{z+x}{x+y+z+t}\)

\(\dfrac{t}{x+z+t}< \dfrac{t+y}{x+y+z+t}\)

\(\Rightarrow M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}\)

=2

\(\Rightarrow M^{10}< 2^{10}=1024< 1025\)

\(\Rightarrow\)M10<1025 (đpcm)

6 tháng 5 2018

vì s,y,z,t là stn khác 0 \(\Rightarrow\frac{x}{x+y+z}< \frac{x}{x+y};\frac{y}{x+y+t}< \frac{y}{x+y}\Rightarrow\frac{x}{x+y+z}+\frac{y}{x+y+t}< \frac{x}{x+y}+\frac{y}{x+y}=1\)

     \(\frac{z}{y+z+t}< \frac{z}{z+t};\frac{t}{x+z+t}< \frac{t}{z+t}\Rightarrow\frac{z}{y+z+t}+\frac{t}{x+y+t}< \frac{z}{z+t}+\frac{t}{z+t}=1\)

\(\Rightarrow M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< 1+1=2\)

\(\Rightarrow M^{10}< 2^{10}=1024< 1025\Rightarrow M^{10}< 1025\)

3 tháng 3 2019

Khó thế

12 tháng 4 2017

Từ \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

\(x+y+z+t\ne0\) nên ta đi xét \(x+y+z+t=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\). Khi đó

\(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=4\)

12 tháng 4 2017

hình như bạn làm nhầm rùi thì phải x+y+z+t khác 0 rồi sao lại x +y+z+t = 0 nữa zậy bạn

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

\(y^2=xz\Rightarrow \frac{y}{z}=\frac{x}{y}\)

\(z^2=yt\Rightarrow \frac{z}{t}=\frac{y}{z}\)

Vậy \(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}\)

Ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Rightarrow \frac{x^3}{y^3}=\frac{y^3}{z^3}=\frac{z^3}{t^3}=\frac{x^3+y^3+z^3}{y^3+z^3+t^3}(1)\) (áp dụng tính chất dãy tỉ số bằng nhau)

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Rightarrow \frac{x^3}{y^3}=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}(2)\)

Từ \((1);(2)\Rightarrow \frac{x^3+y^3+z^3}{y^3+z^3+t^3}=\frac{x}{t}\) (đpcm)

16 tháng 6 2017

Ta có: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+t+x}=\dfrac{t}{y+x+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{y+t+x}=\dfrac{x+y+z+t}{y+x+z}\)+) Xét \(x+y+z+t=0\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\end{matrix}\right.\)

\(\Rightarrow A=-1\)

+) Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

\(\Rightarrow A=1\)

Vậy A = -1 hoặc A = 1

16 tháng 6 2017

Ta có:\(\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

Nếu x+y+z+t\(\ne\)0 thì y+z+t=z+t+x=t+x+y=x+y+z

=>x=y=z=t nên P=1+1+1+1=4

Nếu X+y+z+t=0 thì P=-4