K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

b) Ta có: \(M=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\dfrac{a-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\sqrt{a}\left[\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right]}{2\sqrt{a}}\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}\)

\(=\dfrac{-4\sqrt{a}}{2}=-2\sqrt{a}\)

c) Để M=-4 thì \(-2\sqrt{a}=-4\)

\(\Leftrightarrow\sqrt{a}=2\)

hay a=4(thỏa ĐK)

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

Lời giải:

a) ĐKXĐ: \(a>0; a\neq 1\)

\(M=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\frac{a-1}{2\sqrt{a}}.\frac{(a-\sqrt{a})(\sqrt{a}-1)-(a+\sqrt{a})(\sqrt{a}+1)}{(\sqrt{a}+1)(\sqrt{a}-1)}\)

\(=\frac{a-1}{2\sqrt{a}}.\sqrt{a}.\frac{(\sqrt{a}-1)^2-(\sqrt{a}+1)^2}{a-1}\)

\(=\frac{(\sqrt{a}-1)^2-(\sqrt{a}+1)^2}{2}=\frac{a+1-2\sqrt{a}-(a+1+2\sqrt{a})}{2}=\frac{-4\sqrt{a}}{2}=-2\sqrt{a}\)

b)

Để \(M=-4\Leftrightarrow -2\sqrt{a}=-4\Leftrightarrow \sqrt{a}=2\Rightarrow a=4\)

16 tháng 8 2018

em cám ơn

Sửa đề: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{1;4\right\}\end{matrix}\right.\)

Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a+3\sqrt{a}+2-a+3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{6\sqrt{a}}\)

\(=\dfrac{a-4}{6a\left(\sqrt{a}-1\right)}\)

c) Thay \(a=9-4\sqrt{5}\) vào Q, ta được:

\(Q=\dfrac{5-4\sqrt{5}}{6\left(9-4\sqrt{5}\right)\left(\sqrt{5}-3\right)}\)

\(=\dfrac{5-4\sqrt{5}}{6\left(9\sqrt{5}-27-20+12\sqrt{5}\right)}\)

\(=\dfrac{5-4\sqrt{5}}{6\left(21\sqrt{5}-47\right)}\)

\(=\dfrac{\left(5-4\sqrt{5}\right)\left(21\sqrt{5}+47\right)}{-24}\)

\(=\dfrac{105\sqrt{5}+235-420-188\sqrt{5}}{-24}\)

\(=\dfrac{-83\sqrt{5}-185}{-24}=\dfrac{83\sqrt{5}+185}{24}\)

10 tháng 7 2021

cảm ơn ạ!

 

10 tháng 9 2017

1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)

\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)

\(=1+2\sqrt{2}+2-3\)

\(=2\sqrt{2}\)

10 tháng 9 2017

3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)

ĐKXĐ \(x>0,x\ne1\)

pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)

b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)

\(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)

\(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)

Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)

(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)

28 tháng 7 2023

a) \(M=3\sqrt{3}-\sqrt{12}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(M=3\sqrt{3}-2\sqrt{3}-\left|\sqrt{3}-1\right|\)

\(M=\sqrt{3}-\sqrt{3}+1\)

\(M=1\)

b) Ta có:

\(N=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(N=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(N=\left(\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(N=\dfrac{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)}\)

\(N=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Theo đề ta có: \(M=2N\)

Khi: \(1=2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\)

\(\Leftrightarrow1=\dfrac{2\sqrt{a}-2}{\sqrt{a}}\)

\(\Leftrightarrow\sqrt{a}=2\sqrt{a}-2\)

\(\Leftrightarrow2\sqrt{a}-\sqrt{a}=2\)

\(\Leftrightarrow\sqrt{a}=2\)

\(\Leftrightarrow a=4\left(tm\right)\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

ĐK: $x>0; a\neq 1; a\neq 4$

a) 

$M=\frac{\sqrt{a}-(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}-1)}:\frac{(\sqrt{a}+1)(\sqrt{a}-1)-(\sqrt{a}-2)(\sqrt{a}+2)}{(\sqrt{a}-2)(\sqrt{a}-1)}$

$=\frac{1}{\sqrt{a}(\sqrt{a}-1)}:\frac{3}{(\sqrt{a}-2)(\sqrt{a}-1)}=\frac{1}{\sqrt{a}(\sqrt{a}-1)}.\frac{(\sqrt{a}-2)(\sqrt{a}-1)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}$

b) 

$M>\frac{-1}{2}\Leftrightarrow \frac{\sqrt{a}-2}{3\sqrt{a}}+\frac{1}{2}>0$

$\Leftrightarrow \frac{5\sqrt{a}-4}{6\sqrt{a}}>0$

$\Leftrightarrow 5\sqrt{a}-4>0$

$\Leftrightarrow a>\frac{16}{25}$

Kết hợp với ĐKXĐ thì $a>\frac{16}{25}; a\neq 1; a\neq 4$

18 tháng 12 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a\ne1\end{matrix}\right.\)

b: Sửa đề: \(C=\left[1:\left(1-\dfrac{\sqrt{a}}{1+\sqrt{a}}\right)\right]\cdot\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)

\(=\left[1:\dfrac{a+\sqrt{1}-\sqrt{a}}{\sqrt{a}+1}\right]\cdot\left[\dfrac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right]\)

\(=\dfrac{\sqrt{a}+1}{1}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)

\(=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{a+1}=\dfrac{a-1}{a+1}\)

c: Để C là số nguyên thì \(a-1⋮a+1\)

=>\(a+1-2⋮a+1\)

=>\(-2⋮a+1\)

=>\(a+1\in\left\{1;-1;2;-2\right\}\)

=>\(a\in\left\{0;-2;1;-3\right\}\)

Kết hợp ĐKXĐ, ta được: a=0

17 tháng 10 2023

3:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >9\end{matrix}\right.\)

\(M=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}\)

\(=\dfrac{6}{3\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\)

b: M>1/3

=>M-1/3>0

=>\(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{3}>0\)

=>\(\dfrac{6-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}>0\)

=>\(3-\sqrt{x}>0\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

c: \(\sqrt{x}+3>=3\) với mọi x thỏa mãn ĐKXĐ

=>\(M=\dfrac{2}{\sqrt{x}+3}< =\dfrac{2}{3}\) với mọi x thỏa mãn ĐKXĐ

Dấu = xảy ra khi x=0

17 tháng 10 2023

bn bt làm câu 2 ko ạ giúp mik với 

19 tháng 6 2017

Bài 1 : Rút gọn biểu thức :

\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)

\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)

\(=-10\sqrt{2}+10-7+30\sqrt{2}\)

\(=20\sqrt{2}+3\)

19 tháng 6 2017

Bài 2:

a) ĐKXĐ : x # 4 ; x # - 4

P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\)

Vậy, để P = 2 thì x = 16.

29 tháng 11 2021

undefinedundefinedundefined