Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)
b. Thay số vào rồi tính là ra nhé bạn.
c. \(f\left(x\right)=\frac{1}{4}\)
\(\frac{x+2}{x-1}=\frac{1}{4}\)
4(x + 2) = x - 1
4x + 8 = x - 1
4x - x = -1 - 8
3x = -9
x = -3
d. \(f\left(x\right)\in Z\)
\(\Rightarrow\frac{x+2}{x-1}\in Z\)
\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)
\(\Rightarrow1+\frac{3}{x-1}\in Z\)
\(\Rightarrow\frac{3}{x-1}\in Z\)
Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)
Ta có bảng sau:
x - 1 | -1 | -3 | 1 | 3 |
x | 0 | -2 | 2 | 4 |
Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
e. f(x) > 0
\(\Leftrightarrow\frac{x+2}{x-1}>0\)
\(\Rightarrow1+\frac{3}{x-1}>0\)
\(\Rightarrow\frac{3}{x-1}>-1\)
\(\Rightarrow x-1>-3\)
\(\Rightarrow x>-2\)
Bài giải
a, Ta có : \(A=\left|x-1\right|+\left|x-2\right|\)
* Với x < 2 thì :
\(A=-\left(x-1\right)-\left(x-2\right)\)
\(A=-x+1-x+2\)
\(A=-2x+3\)
* Với x > 2 thì :
\(A=x-1+x-2\)
\(A=2x-3\)
b, Ta có :
\(B=\frac{42-y}{y-15}=\frac{15-y+27}{y-15}=\frac{15-y}{y-15}+\frac{27}{y-15}=-1+\frac{27}{y-15}\)
B đạt GT nguyên NN khi \(\frac{27}{y-15}\) đạt GT nguyên NN
\(\Rightarrow\text{ }y\ne15\)
Ta xét 2 trường hợp :
* Với y < 15 => \(\frac{27}{y-15}< 0\text{ }\Rightarrow\text{ }B< 0\)
* Với y > 15 => \(\frac{27}{y-15}>0\text{ }\Rightarrow\text{ }B>0\)
Mà ta đang tìm GT nguyên NN của \(\frac{27}{y-15}\) \(\Rightarrow\) y - 15 đạt GTLN và y < 15 , x nguyên => y = 14
=> GTNN của \(\frac{27}{y-15}=\frac{27}{-1}=-27\)
\(\Rightarrow\)GT nguyên NN của B = - 1 + ( - 27 ) = - 28 khi x = - 14
Ta đặt:
\(A=\frac{42-x}{x-15}=1+\frac{27}{x-15}\)
Để cho A nguyên ti (x-15) phải là U nguyên của 27
Để A có GTNN thì (x-15) phải là số âm lớn nhất
Từ 2 cái này ta suy ra x-15 phải là ước nguyên âm lớn nhất của 27
\(\Rightarrow x-15=1\)
\(\Rightarrow x=14\)
\(\Rightarrow A=1+\frac{27}{-1}=-28\)
\(B=\frac{42-y}{y-15}=\frac{15+27-y}{y-15}=\frac{27-\left(y-15\right)}{y-15}=\frac{27}{y-15}-1\)
Đặt \(D=\frac{27}{y-15}\)
Ta có: \(B_{min}\Leftrightarrow D_{min}\)
ĐK: \(y\ne15\),xét 2 TH:
TH1:Nếu y<15 thì y-15<0,mà 27>0=>D<0
TH2:Nếu y>15 thì y-15>0;mà 27>0=>D>0
Như vậy,muốn \(D_{min}\) ta phải chọn y sao cho D<0,tức là chọn y<15
Khi đó \(D_{min}\) khi số đối của \(D_{max}\Leftrightarrow\left(\frac{27}{15-y}\right)_{max}\Leftrightarrow\left(15-y\right)_{min}\) (do 27 là hằng số dương)
Có 15-y>0,mà \(x\in Z\) nên \(\left(15-y\right)_{min}\Leftrightarrow15-y=1\Leftrightarrow y=14\) (thỏa mãn ĐK)
Vậy \(B_{min}=\frac{42-14}{14-14}=-28\) tại y=14
a, Để A nhận giá trị lớn nhất thì 19 - x nhận giá trị nguyên dương nhỏ nhất : \(19-x=1\Leftrightarrow x=18\)
b, Để B nhận giá trị nhỏ nhất thì x - 2019 nhận giá trị nguyên âm lớn nhất : \(x-2019=-1\Leftrightarrow x=2018\)