K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

\(a,F=\dfrac{x^2+x+4x^2+2-x^2+3x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x}{x-1}\\ b,\left|x+2\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1-2=-1\left(ktm\right)\\x=-1-2=-3\end{matrix}\right.\Leftrightarrow x=-3\\ \Leftrightarrow F=\dfrac{-12}{-4}=3\\ c,K=F\left(x-1\right)-x^2-2021=4x-x^2-2021\\ K=-\left(x^2-4x+4\right)-2017=-\left(x-2\right)^2-2017\le-2017\\ K_{max}=-2017\Leftrightarrow x=2\left(tm\right)\)

5 tháng 12 2017

Đăng ít thôi.

5 tháng 12 2017

~ bt làm hăm giúp mình câu 2+3

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Câu a:
\(A=x^2-4x+1=(x^2-4x+4)-3\)

\(=(x-2)^2-3\geq 0-3=-3\)

Dấu "=" xảy ra khi $(x-2)^2=0$ hay $x=2$

Vậy GTNN của $A$ là $-3$ khi $x=2$

Câu b:

\(B=5-8x-x^2=21-(x^2+8x+16)\)

\(=21-(x+4)^2\leq 21-0=21\)

Dấu "=" xảy ra khi $(x+4)^2=0$ hay $x=-4$

Vậy GTLN của $B$ là $21$ khi $x=-4$

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Câu c:

\(C=5x-x^2=-(x^2-5x)=\frac{25}{4}-(x^2-5x+\frac{5^2}{2^2})\)

\(=\frac{25}{4}-(x-\frac{5}{2})^2\leq \frac{25}{4}-0=\frac{25}{4}\)

Dấu "=" xảy ra khi \((x-\frac{5}{2})^2=0\Leftrightarrow x=\frac{5}{2}\)

Vậy GTLN của $C$ là $\frac{25}{4}$ khi $x=\frac{5}{2}$

Câu d:

\(D=(x-1)(x+3)(x+2)(x+6)=[(x-1)(x+6)][(x+3)(x+2)]\)

\(=(x^2+5x-6)(x^2+5x+6)\)

\(=(x^2+5x)^2-6^2=(x^2+5x)^2-36\geq 0-36=-36\)

Dấu "=" xảy ra khi \((x^2+5x)^2=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=-5\end{matrix}\right.\)

Vậy GTNN của $D$ là $-36$ khi $x=0$ hoặc $x=-5$

21 tháng 12 2021

Answer:

Câu 1:

\(\left(5x-x-\frac{1}{2}\right)2x\)

\(=\left(4x-\frac{1}{2}\right)2x\)

\(=4x.2x-\frac{1}{2}.2x\)

\(=8x^2-x\)

\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)

\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)

\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)

\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)

\(=x^4+8x^3+19x^2+24x+48\)

Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\)\(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)

Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(= (x²+2xy+y²)-(x²-2xy+y²)\)

\(= x²+2xy+y²-x²+2xy-y²\)

\(= 4xy\)

\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)

Câu 2:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(x^2.\left(x-1\right)+4-4x=0\)

\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)

Trường hợp 1: \(x-1=0\Rightarrow x=1\)

Trường hợp 2: \(x-2=0\Rightarrow x=2\)

Trường hợp 3: \(x+2=0\Rightarrow x=-2\)

Câu 3: Bạn xem lại đề bài nhé.

7 tháng 11 2017

Bài 1 . Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 3x - 10) ta được x+ 2

Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 7x + 10) ta được x - 2

Do đó , ta có :

\(\dfrac{1}{x^2+3x-10}=\dfrac{x+2}{\left(x^2+3x-10\right)\left(x+2\right)}=\dfrac{x+2}{x^3+5x^2-4x-20}\)

Và : \(\dfrac{x}{x^2+7x+10}=\dfrac{x\left(x-2\right)}{\left(x^2+7x+10\right)\left(x-2\right)}=\dfrac{x^2-2x}{x^3+5x^2-4x-20}\)

7 tháng 11 2017

Bài 2 . a) Ta có :

\(\dfrac{x-1}{x^3+1}\)( giữ nguyên)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2+2x}{x^3+1}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2-2x+2}{x^3+1}\)

b) Ta có MTC = x2( y - z)2

Ta có :

\(\dfrac{x+y}{x\left(y-z\right)^2}=\dfrac{x^2+xy}{x^2\left(y-z\right)^2}\)

\(\dfrac{y}{x^2\left(y-z\right)^2}\)( giữ nguyên )

\(\dfrac{z}{x^2}=\dfrac{z\left(y-z\right)^2}{x^2\left(y-z\right)^2}\)

a: \(A=4\cdot15^2-70^2=-4000\)

b: \(B=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+y+1\right)^2\)

\(=100^2=10000\)

c: \(C=b^2-3b+a^2+3a-2ab\)

\(=\left(a-b\right)^2+3\left(a-b\right)\)

\(=\left(a-b\right)\left(a-b+3\right)\)

\(=\left(-5\right)\cdot\left(-5+3\right)=\left(-5\right)\cdot\left(-2\right)=10\)

d: \(D=\left(x-y\right)^3+3xy\left(x-y\right)+3xy\)

\(=\left(-1\right)^3-3xy+3xy\)

=-1

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

Bài 1: Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).Bài 2: Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.Bài 3: Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng...
Đọc tiếp

Bài 1: 

Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).
Bài 2:

 Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.
Bài 3:

 Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng a, b.
Bài 4: 
a)Tìm tất cả các số nguyên n sao cho :\(n^4+2n^3+2n^2+n+7\) là số chính phương.
b)Tìm nghiệm nguyên của của phương trình:x2+xy+y2=x2y2
Bài 7:

 Chứng minh rằng : (x-1)(x-3)(x-4)(x-6) + 10 > 0   \(\forall x\)
Bài 8:

 Cho x≥0, y≥0, z≥0 và x+y+z=1. Chứng minh rằng:\(xy+yz+zx-2xyz\le\frac{7}{27}\)
Bài 9: Cho biểu thức:
P=\(\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a) Rút gọn P
b) Tính giá trị của P khi |x|=\(\frac{1}{2}\)
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
d) Tìm x để P>0
Bài 10: 

Một người đi xe gắn máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự định đi của người đó.
Bài 11: Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Bài 11: Cho biểu thức: 

\(A=\left[\frac{2}{3x}+\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
a) Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên.

0
25 tháng 7 2019

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

Vậy \(A_{min}=1\Leftrightarrow x=-1\)

25 tháng 7 2019

\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)

Vậy \(B_{min}=2\Leftrightarrow x=-2\)