Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{1000}\right)^2< 1\)
\(A=\frac{1}{4}+\frac{1}{9}+...+\frac{1}{1000000}< 1\)
\(\frac{1}{4}< \frac{1}{1\cdot2}\)
\(\frac{1}{9}< \frac{1}{2\cdot3}\)
\(...\)
\(\frac{1}{1000000}< \frac{1}{999.1000}\)
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{999\cdot1000}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(A< \frac{1}{1}-\frac{1}{1000}< 1\)
\(\Rightarrow A< 1\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{999.1000}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{999}-\frac{1}{1000}\)
\(A< 1-\frac{1}{1000}\)
\(=>A< 1\)
\(=>ĐPCM\)
A = 1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100
2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/299
2A - A = (1 + 1/2 + 1/22 + 1/23 + ... + 1/299) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100)
A = 1 - 1/2100 < 1
Do 1 > 1/2100 => A > 0
=> 0 < A < 1
=> đpcm
Ta có : \(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2017}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{2}{2^{2016}}\right)\)
\(A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2016}}-\frac{1}{2^{2017}}\)
\(A=2-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)
Vậy A < 1
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(A=2-\frac{1}{2^{2017}}\left(đpcm\right)\)
1/2+1/2 mũ 2+1/2 mũ 3+...+1/2 mũ 100